--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7669 - Precision: 0.2852 - Recall: 0.2420 - F1: 0.2618 - Accuracy: 0.8806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0387 | 0.4292 | 100 | 3.2626 | 0.2781 | 0.2316 | 0.2527 | 0.8801 | | 0.0432 | 0.8584 | 200 | 4.3510 | 0.3575 | 0.1485 | 0.2098 | 0.9021 | | 0.0305 | 1.2876 | 300 | 4.4340 | 0.3663 | 0.1578 | 0.2206 | 0.9024 | | 0.0303 | 1.7167 | 400 | 4.2810 | 0.3418 | 0.1537 | 0.2120 | 0.9000 | | 0.0347 | 2.1459 | 500 | 4.3217 | 0.3607 | 0.1828 | 0.2426 | 0.9001 | | 0.0235 | 2.5751 | 600 | 4.3738 | 0.3302 | 0.1817 | 0.2344 | 0.8961 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0