--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6682 - Precision: 0.1905 - Recall: 0.5929 - F1: 0.2884 - Accuracy: 0.7439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6693 | 0.4292 | 100 | 0.6514 | 0.1965 | 0.4060 | 0.2648 | 0.8027 | | 0.6306 | 0.8584 | 200 | 0.6153 | 0.1557 | 0.6739 | 0.2530 | 0.6517 | | 0.5589 | 1.2876 | 300 | 0.6298 | 0.1694 | 0.6552 | 0.2693 | 0.6887 | | 0.552 | 1.7167 | 400 | 0.6102 | 0.1726 | 0.6355 | 0.2715 | 0.7015 | | 0.5035 | 2.1459 | 500 | 0.6432 | 0.1808 | 0.6293 | 0.2809 | 0.7180 | | 0.4624 | 2.5751 | 600 | 0.6507 | 0.1904 | 0.6054 | 0.2897 | 0.7402 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0