--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5440 - Precision: 0.3143 - Recall: 0.2170 - F1: 0.2568 - Accuracy: 0.8900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2733 | 0.4292 | 100 | 0.4491 | 0.3382 | 0.1454 | 0.2033 | 0.9003 | | 0.2635 | 0.8584 | 200 | 0.4566 | 0.3327 | 0.1848 | 0.2377 | 0.8962 | | 0.202 | 1.2876 | 300 | 0.5266 | 0.3377 | 0.1599 | 0.2171 | 0.8990 | | 0.1981 | 1.7167 | 400 | 0.5384 | 0.3529 | 0.1495 | 0.2101 | 0.9016 | | 0.1904 | 2.1459 | 500 | 0.5169 | 0.3004 | 0.2399 | 0.2667 | 0.8846 | | 0.1682 | 2.5751 | 600 | 0.5660 | 0.3339 | 0.1963 | 0.2472 | 0.8954 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0