--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1545 - Precision: 0.2718 - Recall: 0.2523 - F1: 0.2617 - Accuracy: 0.8754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1562 | 0.4292 | 100 | 1.0438 | 0.3433 | 0.1900 | 0.2447 | 0.8973 | | 0.1346 | 0.8584 | 200 | 1.0574 | 0.3029 | 0.2305 | 0.2618 | 0.8862 | | 0.1116 | 1.2876 | 300 | 1.4601 | 0.4197 | 0.1194 | 0.1859 | 0.9085 | | 0.1141 | 1.7167 | 400 | 1.0446 | 0.2705 | 0.2565 | 0.2633 | 0.8744 | | 0.1047 | 2.1459 | 500 | 1.1404 | 0.2783 | 0.2710 | 0.2746 | 0.8747 | | 0.103 | 2.5751 | 600 | 1.3562 | 0.3015 | 0.1869 | 0.2308 | 0.8909 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0