--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8504 - Precision: 0.2663 - Recall: 0.2503 - F1: 0.2580 - Accuracy: 0.8740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0738 | 0.4292 | 100 | 3.5742 | 0.3714 | 0.1080 | 0.1673 | 0.9059 | | 0.0518 | 0.8584 | 200 | 3.6916 | 0.4130 | 0.1059 | 0.1686 | 0.9086 | | 0.0464 | 1.2876 | 300 | 2.9332 | 0.3185 | 0.2461 | 0.2777 | 0.8879 | | 0.0313 | 1.7167 | 400 | 3.4018 | 0.3495 | 0.1568 | 0.2165 | 0.9007 | | 0.0262 | 2.1459 | 500 | 3.6431 | 0.3581 | 0.1599 | 0.2211 | 0.9014 | | 0.0374 | 2.5751 | 600 | 3.2736 | 0.3184 | 0.2139 | 0.2559 | 0.8911 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0