--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: chargoddard/Yi-6B-Llama model-index: - name: model-update results: [] --- # model-update This model is a fine-tuned version of [chargoddard/Yi-6B-Llama](https://huggingface.co/chargoddard/Yi-6B-Llama) on the oncc_medqa_instruct dataset. ## Training procedure ``` accelerate launch --config_file accelerate_config.yaml src/train_bash.py --stage sft --do_train True --model_name_or_path /workspace/model --finetuning_type lora --quantization_bit 4 --flash_attn True --dataset_dir data --cutoff_len 1024 --learning_rate 0.0005 --num_train_epochs 1.0 --max_samples 10000 --lr_scheduler_type cosine --max_grad_norm 1.0 --logging_steps 10 --save_steps 100 --warmup_steps 20 --neftune_noise_alpha 0.5 --lora_rank 8 --lora_dropout 0.2 --output_dir /workspace/model-update --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lora_target q_proj,v_proj --template llama2 --dataset oncc_medqa_instruct ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.0.1+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2