--- license: apache-2.0 base_model: dslim/distilbert-NER tags: - generated_from_trainer datasets: - conll2012_ontonotesv5 metrics: - accuracy - f1 model-index: - name: distilbert-NER-finetuned results: - task: name: Token Classification type: token-classification dataset: name: conll2012_ontonotesv5 type: conll2012_ontonotesv5 config: english_v4 split: validation args: english_v4 metrics: - name: Accuracy type: accuracy value: 0.886927374301676 - name: F1 type: f1 value: 0.48622047244094485 --- # distilbert-NER-finetuned This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset. It achieves the following results on the evaluation set: - Loss: 0.4199 - Accuracy: 0.8869 - F1: 0.4862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7537 | 1.0 | 81 | 0.5239 | 0.8635 | 0.4186 | | 0.4601 | 2.0 | 162 | 0.4479 | 0.88 | 0.4790 | | 0.3613 | 3.0 | 243 | 0.4199 | 0.8869 | 0.4862 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1