--- license: mit base_model: ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 22best_berita_roberta_model_fold_5 results: [] --- [Visualize in Weights & Biases]() # 22best_berita_roberta_model_fold_5 This model is a fine-tuned version of [ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0203 - Accuracy: 0.8578 - Precision: 0.8590 - Recall: 0.8528 - F1: 0.8538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 106 | 1.1381 | 0.5403 | 0.7643 | 0.5153 | 0.4656 | | No log | 2.0 | 212 | 1.0541 | 0.7536 | 0.7980 | 0.7549 | 0.7368 | | No log | 3.0 | 318 | 0.8831 | 0.7867 | 0.8067 | 0.7938 | 0.7852 | | No log | 4.0 | 424 | 1.2855 | 0.7630 | 0.8040 | 0.7730 | 0.7635 | | 0.4634 | 5.0 | 530 | 0.9810 | 0.8483 | 0.8576 | 0.8458 | 0.8472 | | 0.4634 | 6.0 | 636 | 1.1545 | 0.8341 | 0.8493 | 0.8254 | 0.8260 | | 0.4634 | 7.0 | 742 | 1.0520 | 0.8483 | 0.8509 | 0.8443 | 0.8451 | | 0.4634 | 8.0 | 848 | 1.0203 | 0.8578 | 0.8590 | 0.8528 | 0.8538 | | 0.4634 | 9.0 | 954 | 1.0454 | 0.8578 | 0.8588 | 0.8530 | 0.8542 | | 0.0229 | 10.0 | 1060 | 1.0505 | 0.8578 | 0.8588 | 0.8530 | 0.8542 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1