--- pipeline_tag: text-to-image inference: false license: other license_name: stabilityai-nc-research-community license_link: LICENSE tags: - tensorrt - sd3 - sd3-medium - text-to-image - onnx extra_gated_prompt: >- By clicking "Agree", you agree to the [License Agreement](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE) and acknowledge Stability AI's [Privacy Policy](https://stability.ai/privacy-policy). extra_gated_fields: Name: text Email: text Country: country Organization or Affiliation: text Receive email updates and promotions on Stability AI products, services, and research?: type: select options: - 'Yes' - 'No' I acknowledge that this model is for non-commercial use only unless I acquire a separate license from Stability AI: checkbox language: - en --- # Stable Diffusion 3 Medium TensorRT ## Introduction This repository hosts the TensorRT version of **Stable Diffusion 3 Medium** created in collaboration with [NVIDIA](https://huggingface.co/nvidia). The optimized versions give substantial improvements in speed and efficiency. Stable Diffusion 3 Medium is a fast generative text-to-image model with greatly improved performance in multi-subject prompts, image quality, and spelling abilities. ## Model Details ### Model Description Stable Diffusion 3 Medium combines a diffusion transformer architecture and flow matching. - **Developed by:** Stability AI - **Model type:** MMDiT text-to-image model - **Model Description:** This is a conversion of the [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) model ## Performance using TensorRT 10.1 #### Timings for 50 steps at 1024x1024 | Accelerator | CLIP-G | CLIP-L | T5XXL | MMDiT | VAE Decoder | Total | |-------------|-------------|--------------|---------------|-----------------------|---------------------|------------------------| | A100 | 11.95 ms | 5.04 ms | 21.39 ms | 5468.17 ms | 72.25 ms | 5622.47 ms | #### Timings for 30 steps at 1024x1024 with input image conditioning | Accelerator | VAE Encoder | CLIP-G | CLIP-L | T5XXL | MMDiT | VAE Decoder | Total | |-------------|----------------|-------------|--------------|---------------|-----------------------|---------------------|----------------| | A100 | 37.04 ms | 12.07 ms | 5.07 ms | 21.49 ms | 3340.69 ms | 72.02 ms | 3531.49 ms | ## Int8 quantization with [TensorRT Model Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer) The MMDiT in Stable Diffusion 3 Medium can be further optimized with INT8 quantization using TensorRT Model Optimizer. The estimated end-to-end speedup comparing TensorRT fp16 and TensorRT int8 is 1.2x~1.4x on various NVidia GPUs. The memory saving is about 2x for the int8 MMDiT engine compared with the fp16 counterpart. The image quality can be maintained with minimal to negligible degradation. ## Usage Example 1. Follow the [setup instructions](https://github.com/NVIDIA/TensorRT/blob/release/sd3/demo/Diffusion/README.md) on launching a TensorRT NGC container. ```shell git clone https://github.com/NVIDIA/TensorRT.git cd TensorRT git checkout release/sd3 docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:24.05-py3 /bin/bash ``` 2. Download the Stable Diffusion 3 Medium TensorRT files from this repo ```shell git lfs install git clone https://huggingface.co/stabilityai/stable-diffusion-3-medium-tensorrt cd stable-diffusion-3-medium-tensorrt git lfs pull cd .. ``` 3. Install libraries and requirements ```shell cd demo/Diffusion python3 -m pip install --upgrade pip pip3 install -r requirements.txt python3 -m pip install --pre --upgrade --extra-index-url https://pypi.nvidia.com tensorrt-cu12 ``` 4. Perform TensorRT optimized inference: - **Stable Diffusion 3 Medium** Works best for 1024x1024 images. The first invocation produces plan files in --engine-dir specific to the accelerator being run on and are reused for later invocations. ``` python3 demo_txt2img_sd3.py \ ""Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"" \ --version=sd3 \ --onnx-dir /workspace/sd3-tensorrt/ \ --engine-dir /workspace/sd3-tensorrt/engine \ --seed 42 \ --width 1024 \ --height 1024 \ --build-static-batch \ --use-cuda-graph ``` - **Stable Diffusion 3 Medium with input image conditioning** Provide an input image conditioning using below. Works best for 1024x1024 but may also work at 512x512. ``` wget https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png -O dog-on-bench.png python3 demo_txt2img_sd3.py \ """dog wearing a sweater and a blue collar""" \ --version=sd3 \ --onnx-dir /workspace/sd3-tensorrt/ \ --engine-dir /workspace/sd3-tensorrt/engine \ --seed 42 \ --width 1024 \ --height 1024 \ --input-image dog-on-bench.png \ --build-static-batch \ --use-cuda-graph ```