--- language: pl license: cc-by-4.0 tags: - ner datasets: - clarin-pl/kpwr-ner metrics: - f1 - accuracy - precision - recall widget: - text: "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." example_title: "Example" --- # FastPDN FastPolDeepNer is model for Named Entity Recognition, designed for easy use, training and configuration. The forerunner of this project is [PolDeepNer2](https://gitlab.clarin-pl.eu/information-extraction/poldeepner2). The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers. Source code: https://gitlab.clarin-pl.eu/grupa-wieszcz/ner/fast-pdn ## How to use Here is how to use this model to get Named Entities in text: ```python from transformers import pipeline ner = pipeline('ner', model='clarin-pl/FastPDN', aggregation_strategy='simple') text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." ner_results = ner(text) for output in ner_results: print(output) {'entity_group': 'nam_liv_person', 'score': 0.9996054, 'word': 'Jan Kowalski', 'start': 12, 'end': 24} {'entity_group': 'nam_loc_gpe_city', 'score': 0.998931, 'word': 'Wrocławiu', 'start': 39, 'end': 48} ``` Here is how to use this model to get the logits for every token in text: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN") model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN") text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training data The FastPDN model was trained on datasets (with 82 class versions) of kpwr and cen. Annotation guidelines are specified [here](https://clarin-pl.eu/dspace/bitstream/handle/11321/294/WytyczneKPWr-jednostkiidentyfikacyjne.pdf). ## Pretraining FastPDN models have been fine-tuned, thanks to pretrained models: - [herbert-base-case](https://huggingface.co/allegro/herbert-base-cased) - [distiluse-base-multilingual-cased-v1](sentence-transformers/distiluse-base-multilingual-cased-v1) ## Evaluation Runs trained on `cen_n82` and `kpwr_n82`: | name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall| |---------|-------|------------|--------|--------------|-----------| |distiluse| 0.53 | 0.61 | 0.95 | 0.55 | 0.54 | | herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 | ## Authors - Grupa Wieszcze CLARIN-PL - Wiktor Walentynowicz ## Contact - Norbert Ropiak (norbert.ropiak@pwr.edu.pl)