--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: product_classifier results: [] --- # product_classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6760 - Accuracy: {'accuracy': 0.80125} - Precision: {'precision': 0.785989926719994} - Recall: {'recall': 0.7755906520102293} - F1 Score: {'f1': 0.7704315421053631} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:-----------------------:|:---------------------------------:|:------------------------------:|:-------------------------:| | 0.9575 | 1.0 | 3200 | 0.6832 | {'accuracy': 0.7978125} | {'precision': 0.7851098622896849} | {'recall': 0.7737991362724596} | {'f1': 0.771520016712035} | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3