--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9867232343399052 --- # model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0560 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 0.1455 | 0.4279 | 10000 | 0.0871 | 0.9822 | | 0.2997 | 0.8557 | 20000 | 0.0938 | 0.9748 | | 0.0095 | 1.2836 | 30000 | 0.0787 | 0.9822 | | 0.0047 | 1.7114 | 40000 | 0.0804 | 0.9799 | | 0.0025 | 2.1393 | 50000 | 0.0647 | 0.9848 | | 0.0085 | 2.5672 | 60000 | 0.0577 | 0.9864 | | 0.0015 | 2.9950 | 70000 | 0.0618 | 0.9867 | | 0.0996 | 3.4229 | 80000 | 0.0596 | 0.9869 | | 0.0755 | 3.8508 | 90000 | 0.0560 | 0.9867 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0