--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-brain-ich results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5 --- # swin-tiny-patch4-window7-224-finetuned-brain-ich This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5522 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.6744 | 0.3571 | | No log | 2.0 | 2 | 1.7141 | 0.2857 | | No log | 3.0 | 3 | 1.7561 | 0.2857 | | No log | 4.0 | 4 | 1.7594 | 0.3571 | | No log | 5.0 | 5 | 1.7200 | 0.3571 | | No log | 6.0 | 6 | 1.6617 | 0.3571 | | No log | 7.0 | 7 | 1.6157 | 0.3571 | | No log | 8.0 | 8 | 1.5829 | 0.5 | | No log | 9.0 | 9 | 1.5618 | 0.5 | | 1.5896 | 10.0 | 10 | 1.5522 | 0.5 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0