--- language: ["ru", "en"] tags: - feature-extraction - embeddings - sentence-similarity --- # LaBSE for English and Russian This is a truncated version of [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE), which is, in turn, a port of [LaBSE](https://tfhub.dev/google/LaBSE/1) by Google. The current model has only English and Russian tokens left in the vocabulary. Thus, the vocabulary is 10% of the original, and number of parameters in the whole model is 27% of the original, without any loss in the quality of English and Russian embeddings. To get the sentence embeddings, you can use the following code: ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cointegrated/LaBSE-en-ru") model = AutoModel.from_pretrained("cointegrated/LaBSE-en-ru") sentences = ["Hello World", "Привет Мир"] encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=64, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = model_output.pooler_output embeddings = torch.nn.functional.normalize(embeddings) print(embeddings) ``` The model has been truncated in [this notebook](https://colab.research.google.com/drive/1dnPRn0-ugj3vZgSpyCC9sgslM2SuSfHy?usp=sharing). You can adapt it for other languages (like [EIStakovskii/LaBSE-fr-de](https://huggingface.co/EIStakovskii/LaBSE-fr-de)), models or datasets. ## Reference: Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Narveen Ari, Wei Wang. [Language-agnostic BERT Sentence Embedding](https://arxiv.org/abs/2007.01852). July 2020 License: [https://tfhub.dev/google/LaBSE/1](https://tfhub.dev/google/LaBSE/1)