--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - cats_vs_dogs metrics: - accuracy model-index: - name: resnet-50-finetuned-dog-vs-cat results: - task: name: Image Classification type: image-classification dataset: name: cats_vs_dogs type: cats_vs_dogs config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9918838103374626 --- # resnet-50-finetuned-dog-vs-cat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0577 - Accuracy: 0.9919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3357 | 1.0 | 164 | 0.2255 | 0.9868 | | 0.1683 | 2.0 | 329 | 0.0577 | 0.9919 | | 0.1448 | 2.99 | 492 | 0.0460 | 0.9919 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2