--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5749 - loss:CosineSimilarityLoss base_model: sentence-transformers/all-mpnet-base-v2 widget: - source_sentence: Young woman in riding gear on top of horse. sentences: - Italy‚Äôs centre-left splinters in presidential vote - The woman is riding on the brown horse. - Mali's Interim President Sworn Into Office - source_sentence: Sony reports record annual loss sentences: - A woman is playing a flute. - A man and a woman kiss. - Sony forecasts record annual loss of $6.4bn - source_sentence: A clear plastic chair in front of a bookcase. sentences: - Allen defends self against Farrow's abuse claims - Ehud Olmert sentenced to six years in Israel - a clear plastic chair in front of book shelves. - source_sentence: KLCI Futures traded mixed at mid-day sentences: - KL shares mixed at mid-day - NATO helicopter makes hard landing in E. Afghanistan - Sewol ferry crew faces trial - source_sentence: We in Britain think differently to Americans. sentences: - south korea has had a bullet train system since the 1980s. - Originally Posted by zaf We in Britain think differently to Americans. - Car bombings kill 13 civilians in Iraqi capital pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.9075334661878893 name: Pearson Cosine - type: spearman_cosine value: 0.9060484206473507 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.9075334589342524 name: Pearson Cosine - type: spearman_cosine value: 0.9060484206473507 name: Spearman Cosine --- # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'We in Britain think differently to Americans.', 'Originally Posted by zaf We in Britain think differently to Americans.', 'south korea has had a bullet train system since the 1980s.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `` and `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | | sts-dev | |:--------------------|:----------|:----------| | pearson_cosine | 0.9075 | 0.9075 | | **spearman_cosine** | **0.906** | **0.906** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 5,749 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:--------------------------------| | US Senate to vote on fiscal cliff deal as deadline nears | Fiscal cliff: House delays vote on fiscal cliff deal - live | 0.5599999904632569 | | This is America, my friends, and it should not happen here," he said to loud applause. | "This is America, my friends, and it should not happen here." | 0.65 | | Books To Help Kids Talk About Boston Marathon News | Report of two explosions at finish line of Boston Marathon | 0.1600000023841858 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 10 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | spearman_cosine | sts-dev_spearman_cosine | |:------:|:----:|:-------------:|:---------------:|:-----------------------:| | 0 | 0 | - | 0.8811 | - | | 0.1 | 18 | - | - | 0.8816 | | 0.2 | 36 | - | - | 0.8834 | | 0.3 | 54 | - | - | 0.8847 | | 0.4 | 72 | - | - | 0.8894 | | 0.5 | 90 | - | - | 0.8933 | | 0.6 | 108 | - | - | 0.8966 | | 0.7 | 126 | - | - | 0.9005 | | 0.8 | 144 | - | - | 0.9020 | | 0.9 | 162 | - | - | 0.9010 | | 1.0 | 180 | - | - | 0.9001 | | 1.1 | 198 | - | - | 0.9022 | | 1.2 | 216 | - | - | 0.9018 | | 1.3 | 234 | - | - | 0.9015 | | 1.4 | 252 | - | - | 0.9029 | | 1.5 | 270 | - | - | 0.9044 | | 1.6 | 288 | - | - | 0.9049 | | 1.7 | 306 | - | - | 0.9051 | | 1.8 | 324 | - | - | 0.9033 | | 1.9 | 342 | - | - | 0.9039 | | 2.0 | 360 | - | - | 0.9050 | | 2.1 | 378 | - | - | 0.9042 | | 2.2 | 396 | - | - | 0.9041 | | 2.3 | 414 | - | - | 0.9040 | | 2.4 | 432 | - | - | 0.9048 | | 2.5 | 450 | - | - | 0.9045 | | 2.6 | 468 | - | - | 0.9046 | | 2.7 | 486 | - | - | 0.9047 | | 2.7778 | 500 | 0.0153 | - | - | | 2.8 | 504 | - | - | 0.9057 | | 2.9 | 522 | - | - | 0.9065 | | 3.0 | 540 | - | - | 0.9074 | | 3.1 | 558 | - | - | 0.9073 | | 3.2 | 576 | - | - | 0.9065 | | 3.3 | 594 | - | - | 0.9046 | | 3.4 | 612 | - | - | 0.9057 | | 3.5 | 630 | - | - | 0.9069 | | 3.6 | 648 | - | - | 0.9062 | | 3.7 | 666 | - | - | 0.9061 | | 3.8 | 684 | - | - | 0.9050 | | 3.9 | 702 | - | - | 0.9050 | | 4.0 | 720 | - | - | 0.9048 | | 4.1 | 738 | - | - | 0.9052 | | 4.2 | 756 | - | - | 0.9055 | | 4.3 | 774 | - | - | 0.9060 | | 4.4 | 792 | - | - | 0.9059 | | 4.5 | 810 | - | - | 0.9064 | | 4.6 | 828 | - | - | 0.9063 | | 4.7 | 846 | - | - | 0.9063 | | 4.8 | 864 | - | - | 0.9067 | | 4.9 | 882 | - | - | 0.9059 | | 5.0 | 900 | - | - | 0.9052 | | 5.1 | 918 | - | - | 0.9061 | | 5.2 | 936 | - | - | 0.9057 | | 5.3 | 954 | - | - | 0.9053 | | 5.4 | 972 | - | - | 0.9060 | | 5.5 | 990 | - | - | 0.9050 | | 5.5556 | 1000 | 0.0051 | - | - | | 5.6 | 1008 | - | - | 0.9053 | | 5.7 | 1026 | - | - | 0.9052 | | 5.8 | 1044 | - | - | 0.9056 | | 5.9 | 1062 | - | - | 0.9062 | | 6.0 | 1080 | - | - | 0.9056 | | 6.1 | 1098 | - | - | 0.9054 | | 6.2 | 1116 | - | - | 0.9058 | | 6.3 | 1134 | - | - | 0.9058 | | 6.4 | 1152 | - | - | 0.9056 | | 6.5 | 1170 | - | - | 0.9057 | | 6.6 | 1188 | - | - | 0.9055 | | 6.7 | 1206 | - | - | 0.9055 | | 6.8 | 1224 | - | - | 0.9053 | | 6.9 | 1242 | - | - | 0.9053 | | 7.0 | 1260 | - | - | 0.9053 | | 7.1 | 1278 | - | - | 0.9057 | | 7.2 | 1296 | - | - | 0.9055 | | 7.3 | 1314 | - | - | 0.9053 | | 7.4 | 1332 | - | - | 0.9056 | | 7.5 | 1350 | - | - | 0.9059 | | 7.6 | 1368 | - | - | 0.9060 | | 7.7 | 1386 | - | - | 0.9057 | | 7.8 | 1404 | - | - | 0.9058 | | 7.9 | 1422 | - | - | 0.9057 | | 8.0 | 1440 | - | - | 0.9058 | | 8.1 | 1458 | - | - | 0.9059 | | 8.2 | 1476 | - | - | 0.9060 | | 8.3 | 1494 | - | - | 0.9056 | | 8.3333 | 1500 | 0.0031 | - | - | | 8.4 | 1512 | - | - | 0.9057 | | 8.5 | 1530 | - | - | 0.9060 | | 8.6 | 1548 | - | - | 0.9058 | | 8.7 | 1566 | - | - | 0.9060 | | 8.8 | 1584 | - | - | 0.9062 | | 8.9 | 1602 | - | - | 0.9061 | | 9.0 | 1620 | - | - | 0.9061 | | 9.1 | 1638 | - | - | 0.9061 | | 9.2 | 1656 | - | - | 0.9059 | | 9.3 | 1674 | - | - | 0.9060 | | 9.4 | 1692 | - | - | 0.9061 | | 9.5 | 1710 | - | - | 0.9061 | | 9.6 | 1728 | - | - | 0.9061 | | 9.7 | 1746 | - | - | 0.9060 | | 9.8 | 1764 | - | - | 0.9061 | | 9.9 | 1782 | - | - | 0.9061 | | 10.0 | 1800 | - | 0.9060 | 0.9060 |
### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```