--- license: apache-2.0 datasets: - Clinton/Text-to-sql-v1 - b-mc2/sql-create-context language: - en pipeline_tag: text2text-generation --- # Model Card for Model ID Based on [t5-small](https://huggingface.co/t5-small), model generates SQL from text given table list with "CREATE TABLE" statements. Supports multiple tables with joins. This is a very light weigh model and could be used in multiple analytical applications. Used combination of [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context) and [Clinton/Text-to-sql-v1](https://huggingface.co/datasets/Clinton/Text-to-sql-v1) dataset. Contact us for more info: support@cloudsummary.com ## Model Details ### Model Description - **Developed by:** cssupport (support@cloudsummary.com) - **Model type:** Language model - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model :** [t5-small](https://huggingface.co/t5-small) ### Model Sources Please refer [t5-small](https://huggingface.co/t5-small) for Model Sources. ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Initialize the tokenizer from Hugging Face Transformers library tokenizer = T5Tokenizer.from_pretrained('t5-small') # Load the model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql') model = model.to(device) model.eval() def generate_sql(input_prompt): # Tokenize the input prompt inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device) # Forward pass with torch.no_grad(): outputs = model.generate(**inputs, max_length=512) # Decode the output IDs to a string (SQL query in this case) generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_sql # Test the function #input_prompt = "tables:\n" + "CREATE TABLE Catalogs (date_of_latest_revision VARCHAR)" + "\n" +"query for: Find the dates on which more than one revisions were made." #input_prompt = "tables:\n" + "CREATE TABLE table_22767 ( \"Year\" real, \"World\" real, \"Asia\" text, \"Africa\" text, \"Europe\" text, \"Latin America/Caribbean\" text, \"Northern America\" text, \"Oceania\" text )" + "\n" +"query for:what will the population of Asia be when Latin America/Caribbean is 783 (7.5%)?." #input_prompt = "tables:\n" + "CREATE TABLE procedures ( subject_id text, hadm_id text, icd9_code text, short_title text, long_title text ) CREATE TABLE diagnoses ( subject_id text, hadm_id text, icd9_code text, short_title text, long_title text ) CREATE TABLE lab ( subject_id text, hadm_id text, itemid text, charttime text, flag text, value_unit text, label text, fluid text ) CREATE TABLE demographic ( subject_id text, hadm_id text, name text, marital_status text, age text, dob text, gender text, language text, religion text, admission_type text, days_stay text, insurance text, ethnicity text, expire_flag text, admission_location text, discharge_location text, diagnosis text, dod text, dob_year text, dod_year text, admittime text, dischtime text, admityear text ) CREATE TABLE prescriptions ( subject_id text, hadm_id text, icustay_id text, drug_type text, drug text, formulary_drug_cd text, route text, drug_dose text )" + "\n" +"query for:" + "what is the total number of patients who were diagnosed with icd9 code 2254?" input_prompt = "tables:\n" + "CREATE TABLE student_course_attendance (student_id VARCHAR); CREATE TABLE students (student_id VARCHAR)" + "\n" + "query for:" + "List the id of students who never attends courses?" generated_sql = generate_sql(input_prompt) print(f"The generated SQL query is: {generated_sql}") #OUTPUT: The generated SQL query is: SELECT student_id FROM students WHERE NOT student_id IN (SELECT student_id FROM student_course_attendance) ``` ## Uses [More Information Needed] ### Direct Use Could used in application where natural language is to be converted into SQL queries. [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## Technical Specifications ### Model Architecture and Objective [t5-small](https://huggingface.co/t5-small) ### Compute Infrastructure #### Hardware one A100-80 #### Software Pytorch and HuggingFace ## Model Card Contact cssupport (support@cloudsummary.com)