import itertools as it import logging import pickle import re from collections import defaultdict import numpy as np import pandas as pd import seaborn as sns import torch from datasets import Dataset, load_from_disk from transformers import ( BertForMaskedLM, BertForSequenceClassification, BertForTokenClassification, ) sns.set() logger = logging.getLogger(__name__) # load data and filter by defined criteria def load_and_filter(filter_data, nproc, input_data_file): data = load_from_disk(input_data_file) if filter_data is not None: data = filter_by_dict(data, filter_data, nproc) return data def filter_by_dict(data, filter_data, nproc): for key, value in filter_data.items(): def filter_data_by_criteria(example): return example[key] in value data = data.filter(filter_data_by_criteria, num_proc=nproc) if len(data) == 0: logger.error("No cells remain after filtering. Check filtering criteria.") raise return data def filter_data_by_tokens(filtered_input_data, tokens, nproc): def if_has_tokens(example): return len(set(example["input_ids"]).intersection(tokens)) == len(tokens) filtered_input_data = filtered_input_data.filter(if_has_tokens, num_proc=nproc) return filtered_input_data def logging_filtered_data_len(filtered_input_data, filtered_tokens_categ): if len(filtered_input_data) == 0: logger.error(f"No cells in dataset contain {filtered_tokens_categ}.") raise else: logger.info(f"# cells with {filtered_tokens_categ}: {len(filtered_input_data)}") def filter_data_by_tokens_and_log( filtered_input_data, tokens, nproc, filtered_tokens_categ ): # filter for cells with anchor gene filtered_input_data = filter_data_by_tokens(filtered_input_data, tokens, nproc) # logging length of filtered data logging_filtered_data_len(filtered_input_data, filtered_tokens_categ) return filtered_input_data def filter_data_by_start_state(filtered_input_data, cell_states_to_model, nproc): # confirm that start state is valid to prevent futile filtering state_key = cell_states_to_model["state_key"] state_values = filtered_input_data[state_key] start_state = cell_states_to_model["start_state"] if start_state not in state_values: logger.error( f"Start state {start_state} is not present " f"in the dataset's {state_key} attribute." ) raise # filter for start state cells def filter_for_origin(example): return example[state_key] in [start_state] filtered_input_data = filtered_input_data.filter(filter_for_origin, num_proc=nproc) return filtered_input_data def slice_by_inds_to_perturb(filtered_input_data, cell_inds_to_perturb): if cell_inds_to_perturb["start"] >= len(filtered_input_data): logger.error( "cell_inds_to_perturb['start'] is larger than the filtered dataset." ) raise if cell_inds_to_perturb["end"] > len(filtered_input_data): logger.warning( "cell_inds_to_perturb['end'] is larger than the filtered dataset. \ Setting to the end of the filtered dataset." ) cell_inds_to_perturb["end"] = len(filtered_input_data) filtered_input_data = filtered_input_data.select( [i for i in range(cell_inds_to_perturb["start"], cell_inds_to_perturb["end"])] ) return filtered_input_data # load model to GPU def load_model(model_type, num_classes, model_directory): if model_type == "Pretrained": model = BertForMaskedLM.from_pretrained( model_directory, output_hidden_states=True, output_attentions=False ) elif model_type == "GeneClassifier": model = BertForTokenClassification.from_pretrained( model_directory, num_labels=num_classes, output_hidden_states=True, output_attentions=False, ) elif model_type == "CellClassifier": model = BertForSequenceClassification.from_pretrained( model_directory, num_labels=num_classes, output_hidden_states=True, output_attentions=False, ) # put the model in eval mode for fwd pass model.eval() model = model.to("cuda:0") return model def quant_layers(model): layer_nums = [] for name, parameter in model.named_parameters(): if "layer" in name: layer_nums += [int(name.split("layer.")[1].split(".")[0])] return int(max(layer_nums)) + 1 def get_model_input_size(model): return int(re.split("\(|,", str(model.bert.embeddings.position_embeddings))[1]) def flatten_list(megalist): return [item for sublist in megalist for item in sublist] def measure_length(example): example["length"] = len(example["input_ids"]) return example def downsample_and_sort(data, max_ncells): num_cells = len(data) # if max number of cells is defined, then shuffle and subsample to this max number if max_ncells is not None: if num_cells > max_ncells: data = data.shuffle(seed=42) num_cells = max_ncells data_subset = data.select([i for i in range(num_cells)]) # sort dataset with largest cell first to encounter any memory errors earlier data_sorted = data_subset.sort("length", reverse=True) return data_sorted def get_possible_states(cell_states_to_model): possible_states = [] for key in ["start_state", "goal_state"]: possible_states += [cell_states_to_model[key]] possible_states += cell_states_to_model.get("alt_states", []) return possible_states def forward_pass_single_cell(model, example_cell, layer_to_quant): example_cell.set_format(type="torch") input_data = example_cell["input_ids"] with torch.no_grad(): outputs = model(input_ids=input_data.to("cuda")) emb = torch.squeeze(outputs.hidden_states[layer_to_quant]) del outputs return emb def perturb_emb_by_index(emb, indices): mask = torch.ones(emb.numel(), dtype=torch.bool) mask[indices] = False return emb[mask] def delete_indices(example): indices = example["perturb_index"] if any(isinstance(el, list) for el in indices): indices = flatten_list(indices) for index in sorted(indices, reverse=True): del example["input_ids"][index] example["length"] = len(example["input_ids"]) return example # for genes_to_perturb = "all" where only genes within cell are overexpressed def overexpress_indices(example): indices = example["perturb_index"] if any(isinstance(el, list) for el in indices): indices = flatten_list(indices) for index in sorted(indices, reverse=True): example["input_ids"].insert(0, example["input_ids"].pop(index)) example["length"] = len(example["input_ids"]) return example # for genes_to_perturb = list of genes to overexpress that are not necessarily expressed in cell def overexpress_tokens(example, max_len): # -100 indicates tokens to overexpress are not present in rank value encoding if example["perturb_index"] != [-100]: example = delete_indices(example) [ example["input_ids"].insert(0, token) for token in example["tokens_to_perturb"][::-1] ] # truncate to max input size, must also truncate original emb to be comparable if len(example["input_ids"]) > max_len: example["input_ids"] = example["input_ids"][0:max_len] example["length"] = len(example["input_ids"]) return example def calc_n_overflow(max_len, example_len, tokens_to_perturb, indices_to_perturb): n_to_add = len(tokens_to_perturb) - len(indices_to_perturb) n_overflow = example_len + n_to_add - max_len return n_overflow def truncate_by_n_overflow(example): new_max_len = example["length"] - example["n_overflow"] example["input_ids"] = example["input_ids"][0:new_max_len] example["length"] = len(example["input_ids"]) return example def remove_indices_from_emb(emb, indices_to_remove, gene_dim): # indices_to_remove is list of indices to remove indices_to_keep = [ i for i in range(emb.size()[gene_dim]) if i not in indices_to_remove ] num_dims = emb.dim() emb_slice = [ slice(None) if dim != gene_dim else indices_to_keep for dim in range(num_dims) ] sliced_emb = emb[emb_slice] return sliced_emb def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim): output_batch_list = [ remove_indices_from_emb(emb_batch[i, :, :], idxes, gene_dim - 1) for i, idxes in enumerate(list_of_indices_to_remove) ] # add padding given genes are sometimes added that are or are not in original cell batch_max = max([emb.size()[gene_dim - 1] for emb in output_batch_list]) output_batch_list_padded = [ pad_xd_tensor(emb, 0.000, batch_max, gene_dim - 1) for emb in output_batch_list ] return torch.stack(output_batch_list_padded) # removes perturbed indices # need to handle the various cases where a set of genes is overexpressed def remove_perturbed_indices_set( emb, perturb_type: str, indices_to_perturb: list[list], tokens_to_perturb: list[list], original_lengths: list[int], input_ids=None, ): if perturb_type == "overexpress": num_perturbed = len(tokens_to_perturb) if num_perturbed == 1: indices_to_perturb_orig = [ idx if idx != [-100] else [None] for idx in indices_to_perturb ] if all(v is [None] for v in indices_to_perturb_orig): return emb else: indices_to_perturb_orig = [] for idx_list in indices_to_perturb: indices_to_perturb_orig.append( [idx if idx != [-100] else [None] for idx in idx_list] ) else: indices_to_perturb_orig = indices_to_perturb emb = remove_indices_from_emb_batch(emb, indices_to_perturb_orig, gene_dim=1) return emb def make_perturbation_batch( example_cell, perturb_type, tokens_to_perturb, anchor_token, combo_lvl, num_proc ) -> tuple[Dataset, list[int]]: if combo_lvl == 0 and tokens_to_perturb == "all": if perturb_type in ["overexpress", "activate"]: range_start = 1 elif perturb_type in ["delete", "inhibit"]: range_start = 0 indices_to_perturb = [ [i] for i in range(range_start, example_cell["length"][0]) ] # elif combo_lvl > 0 and anchor_token is None: ## to implement elif combo_lvl > 0 and (anchor_token is not None): example_input_ids = example_cell["input_ids"][0] anchor_index = example_input_ids.index(anchor_token[0]) indices_to_perturb = [ sorted([anchor_index, i]) if i != anchor_index else None for i in range(example_cell["length"][0]) ] indices_to_perturb = [item for item in indices_to_perturb if item is not None] else: example_input_ids = example_cell["input_ids"][0] indices_to_perturb = [ [example_input_ids.index(token)] if token in example_input_ids else None for token in tokens_to_perturb ] indices_to_perturb = [item for item in indices_to_perturb if item is not None] # create all permutations of combo_lvl of modifiers from tokens_to_perturb if combo_lvl > 0 and (anchor_token is None): if tokens_to_perturb != "all": if len(tokens_to_perturb) == combo_lvl + 1: indices_to_perturb = [ list(x) for x in it.combinations(indices_to_perturb, combo_lvl + 1) ] else: all_indices = [[i] for i in range(example_cell["length"][0])] all_indices = [ index for index in all_indices if index not in indices_to_perturb ] indices_to_perturb = [ [[j for i in indices_to_perturb for j in i], x] for x in all_indices ] length = len(indices_to_perturb) perturbation_dataset = Dataset.from_dict( { "input_ids": example_cell["input_ids"] * length, "perturb_index": indices_to_perturb, } ) if length < 400: num_proc_i = 1 else: num_proc_i = num_proc if perturb_type == "delete": perturbation_dataset = perturbation_dataset.map( delete_indices, num_proc=num_proc_i ) elif perturb_type == "overexpress": perturbation_dataset = perturbation_dataset.map( overexpress_indices, num_proc=num_proc_i ) perturbation_dataset = perturbation_dataset.map(measure_length, num_proc=num_proc_i) return perturbation_dataset, indices_to_perturb # perturbed cell emb removing the activated/overexpressed/inhibited gene emb # so that only non-perturbed gene embeddings are compared to each other # in original or perturbed context def make_comparison_batch(original_emb_batch, indices_to_perturb, perturb_group): all_embs_list = [] # if making comparison batch for multiple perturbations in single cell if perturb_group is False: # squeeze if single cell if original_emb_batch.ndim == 3 and original_emb_batch.size()[0] == 1: original_emb_batch = torch.squeeze(original_emb_batch) original_emb_list = [original_emb_batch] * len(indices_to_perturb) # if making comparison batch for single perturbation in multiple cells elif perturb_group is True: original_emb_list = original_emb_batch for original_emb, indices in zip(original_emb_list, indices_to_perturb): if indices == [-100]: all_embs_list += [original_emb[:]] continue emb_list = [] start = 0 if any(isinstance(el, list) for el in indices): indices = flatten_list(indices) # removes indices that were perturbed from the original embedding for i in sorted(indices): emb_list += [original_emb[start:i]] start = i + 1 emb_list += [original_emb[start:]] all_embs_list += [torch.cat(emb_list)] len_set = set([emb.size()[0] for emb in all_embs_list]) if len(len_set) > 1: max_len = max(len_set) all_embs_list = [pad_2d_tensor(emb, None, max_len, 0) for emb in all_embs_list] return torch.stack(all_embs_list) def pad_list(input_ids, pad_token_id, max_len): input_ids = np.pad( input_ids, (0, max_len - len(input_ids)), mode="constant", constant_values=pad_token_id, ) return input_ids def pad_xd_tensor(tensor, pad_token_id, max_len, dim): padding_length = max_len - tensor.size()[dim] # Construct a padding configuration where all padding values are 0, except for the padding dimension # 2 * number of dimensions (padding before and after for every dimension) pad_config = [0] * 2 * tensor.dim() # Set the padding after the desired dimension to the calculated padding length pad_config[-2 * dim - 1] = padding_length return torch.nn.functional.pad( tensor, pad=pad_config, mode="constant", value=pad_token_id ) def pad_tensor(tensor, pad_token_id, max_len): tensor = torch.nn.functional.pad( tensor, pad=(0, max_len - tensor.numel()), mode="constant", value=pad_token_id ) return tensor def pad_2d_tensor(tensor, pad_token_id, max_len, dim): if dim == 0: pad = (0, 0, 0, max_len - tensor.size()[dim]) elif dim == 1: pad = (0, max_len - tensor.size()[dim], 0, 0) tensor = torch.nn.functional.pad( tensor, pad=pad, mode="constant", value=pad_token_id ) return tensor def pad_3d_tensor(tensor, pad_token_id, max_len, dim): if dim == 0: raise Exception("dim 0 usually does not need to be padded.") if dim == 1: pad = (0, 0, 0, max_len - tensor.size()[dim]) elif dim == 2: pad = (0, max_len - tensor.size()[dim], 0, 0) tensor = torch.nn.functional.pad( tensor, pad=pad, mode="constant", value=pad_token_id ) return tensor def pad_or_truncate_encoding(encoding, pad_token_id, max_len): if isinstance(encoding, torch.Tensor): encoding_len = encoding.size()[0] elif isinstance(encoding, list): encoding_len = len(encoding) if encoding_len > max_len: encoding = encoding[0:max_len] elif encoding_len < max_len: if isinstance(encoding, torch.Tensor): encoding = pad_tensor(encoding, pad_token_id, max_len) elif isinstance(encoding, list): encoding = pad_list(encoding, pad_token_id, max_len) return encoding # pad list of tensors and convert to tensor def pad_tensor_list( tensor_list, dynamic_or_constant, pad_token_id, model_input_size, dim=None, padding_func=None, ): # determine maximum tensor length if dynamic_or_constant == "dynamic": max_len = max([tensor.squeeze().numel() for tensor in tensor_list]) elif isinstance(dynamic_or_constant, int): max_len = dynamic_or_constant else: max_len = model_input_size logger.warning( "If padding style is constant, must provide integer value. " f"Setting padding to max input size {model_input_size}." ) # pad all tensors to maximum length if dim is None: tensor_list = [ pad_tensor(tensor, pad_token_id, max_len) for tensor in tensor_list ] else: tensor_list = [ padding_func(tensor, pad_token_id, max_len, dim) for tensor in tensor_list ] # return stacked tensors if padding_func != pad_3d_tensor: return torch.stack(tensor_list) else: return torch.cat(tensor_list, 0) def gen_attention_mask(minibatch_encoding, max_len=None): if max_len is None: max_len = max(minibatch_encoding["length"]) original_lens = minibatch_encoding["length"] attention_mask = [ [1] * original_len + [0] * (max_len - original_len) if original_len <= max_len else [1] * max_len for original_len in original_lens ] return torch.tensor(attention_mask, device="cuda") # get cell embeddings excluding padding def mean_nonpadding_embs(embs, original_lens, dim=1): # create a mask tensor based on padding lengths mask = torch.arange(embs.size(dim), device=embs.device) < original_lens.unsqueeze(1) if embs.dim() == 3: # fill the masked positions in embs with zeros masked_embs = embs.masked_fill(~mask.unsqueeze(2), 0.0) # compute the mean across the non-padding dimensions mean_embs = masked_embs.sum(dim) / original_lens.view(-1, 1).float() elif embs.dim() == 2: masked_embs = embs.masked_fill(~mask, 0.0) mean_embs = masked_embs.sum(dim) / original_lens.float() return mean_embs # get cell embeddings when there is no padding def compute_nonpadded_cell_embedding(embs, cell_emb_style): if cell_emb_style == "mean_pool": return torch.mean(embs, dim=embs.ndim - 2) # quantify shifts for a set of genes def quant_cos_sims( perturbation_emb, original_emb, cell_states_to_model, state_embs_dict, emb_mode="gene", ): if emb_mode == "gene": cos = torch.nn.CosineSimilarity(dim=2) elif emb_mode == "cell": cos = torch.nn.CosineSimilarity(dim=1) if cell_states_to_model is None: cos_sims = cos(perturbation_emb, original_emb).to("cuda") else: possible_states = get_possible_states(cell_states_to_model) cos_sims = dict(zip(possible_states, [[] for _ in range(len(possible_states))])) for state in possible_states: cos_sims[state] = cos_sim_shift( original_emb, perturbation_emb, state_embs_dict[state].to("cuda"), # required to move to cuda here cos, ) return cos_sims # calculate cos sim shift of perturbation with respect to origin and alternative cell def cos_sim_shift(original_emb, perturbed_emb, end_emb, cos): origin_v_end = cos(original_emb, end_emb) perturb_v_end = cos(perturbed_emb, end_emb) return perturb_v_end - origin_v_end def concatenate_cos_sims(cos_sims): if isinstance(cos_sims, list): return torch.cat(cos_sims) else: for state in cos_sims.keys(): cos_sims[state] = torch.cat(cos_sims[state]) return cos_sims def write_perturbation_dictionary(cos_sims_dict: defaultdict, output_path_prefix: str): with open(f"{output_path_prefix}_raw.pickle", "wb") as fp: pickle.dump(cos_sims_dict, fp) def tensor_list_to_pd(tensor_list): tensor = torch.cat(tensor_list).cpu().numpy() df = pd.DataFrame(tensor) return df def validate_cell_states_to_model(cell_states_to_model): if cell_states_to_model is not None: if len(cell_states_to_model.items()) == 1: logger.warning( "The single value dictionary for cell_states_to_model will be " "replaced with a dictionary with named keys for start, goal, and alternate states. " "Please specify state_key, start_state, goal_state, and alt_states " "in the cell_states_to_model dictionary for future use. " "For example, cell_states_to_model={" "'state_key': 'disease', " "'start_state': 'dcm', " "'goal_state': 'nf', " "'alt_states': ['hcm', 'other1', 'other2']}" ) for key, value in cell_states_to_model.items(): if (len(value) == 3) and isinstance(value, tuple): if ( isinstance(value[0], list) and isinstance(value[1], list) and isinstance(value[2], list) ): if len(value[0]) == 1 and len(value[1]) == 1: all_values = value[0] + value[1] + value[2] if len(all_values) == len(set(all_values)): continue # reformat to the new named key format state_values = flatten_list(list(cell_states_to_model.values())) cell_states_to_model = { "state_key": list(cell_states_to_model.keys())[0], "start_state": state_values[0][0], "goal_state": state_values[1][0], "alt_states": state_values[2:][0], } elif set(cell_states_to_model.keys()).issuperset( {"state_key", "start_state", "goal_state"} ): if ( (cell_states_to_model["state_key"] is None) or (cell_states_to_model["start_state"] is None) or (cell_states_to_model["goal_state"] is None) ): logger.error( "Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model." ) raise if ( cell_states_to_model["start_state"] == cell_states_to_model["goal_state"] ): logger.error("All states must be unique.") raise if "alt_states" in set(cell_states_to_model.keys()): if cell_states_to_model["alt_states"] is not None: if not isinstance(cell_states_to_model["alt_states"], list): logger.error( "cell_states_to_model['alt_states'] must be a list (even if it is one element)." ) raise if len(cell_states_to_model["alt_states"]) != len( set(cell_states_to_model["alt_states"]) ): logger.error("All states must be unique.") raise else: cell_states_to_model["alt_states"] = [] else: logger.error( "cell_states_to_model must only have the following four keys: " "'state_key', 'start_state', 'goal_state', 'alt_states'." "For example, cell_states_to_model={" "'state_key': 'disease', " "'start_state': 'dcm', " "'goal_state': 'nf', " "'alt_states': ['hcm', 'other1', 'other2']}" ) raise