""" Geneformer in silico perturber. **Usage:** .. code-block :: python >>> from geneformer import InSilicoPerturber >>> isp = InSilicoPerturber(perturb_type="delete", ... perturb_rank_shift=None, ... genes_to_perturb="all", ... model_type="CellClassifier", ... num_classes=0, ... emb_mode="cell", ... filter_data={"cell_type":["cardiomyocyte"]}, ... cell_states_to_model={"state_key": "disease", "start_state": "dcm", "goal_state": "nf", "alt_states": ["hcm", "other1", "other2"]}, ... state_embs_dict ={"nf": emb_nf, "hcm": emb_hcm, "dcm": emb_dcm, "other1": emb_other1, "other2": emb_other2}, ... max_ncells=None, ... emb_layer=0, ... forward_batch_size=100, ... nproc=16) >>> isp.perturb_data("path/to/model", ... "path/to/input_data", ... "path/to/output_directory", ... "output_prefix") **Description:** | Performs in silico perturbation (e.g. deletion or overexpression) of defined set of genes or all genes in sample of cells. | Outputs impact of perturbation on cell or gene embeddings. | Output files are analyzed with ``in_silico_perturber_stats``. """ import logging # imports import os import pickle from collections import defaultdict from multiprocess import set_start_method from typing import List import torch from datasets import Dataset, disable_progress_bars from tqdm.auto import trange from . import perturber_utils as pu from .emb_extractor import get_embs from . import TOKEN_DICTIONARY_FILE disable_progress_bars() logger = logging.getLogger(__name__) class InSilicoPerturber: valid_option_dict = { "perturb_type": {"delete", "overexpress", "inhibit", "activate"}, "perturb_rank_shift": {None, 1, 2, 3}, "genes_to_perturb": {"all", list}, "combos": {0, 1}, "anchor_gene": {None, str}, "model_type": {"Pretrained", "GeneClassifier", "CellClassifier"}, "num_classes": {int}, "emb_mode": {"cls", "cell", "cls_and_gene", "cell_and_gene"}, "cell_emb_style": {"mean_pool"}, "filter_data": {None, dict}, "cell_states_to_model": {None, dict}, "state_embs_dict": {None, dict}, "max_ncells": {None, int}, "cell_inds_to_perturb": {"all", dict}, "emb_layer": {-1, 0}, "token_dictionary_file" : {None, str}, "forward_batch_size": {int}, "nproc": {int}, } def __init__( self, perturb_type="delete", perturb_rank_shift=None, genes_to_perturb="all", combos=0, anchor_gene=None, model_type="Pretrained", num_classes=0, emb_mode="cell", cell_emb_style="mean_pool", filter_data=None, cell_states_to_model=None, state_embs_dict=None, max_ncells=None, cell_inds_to_perturb="all", emb_layer=-1, forward_batch_size=100, nproc=4, token_dictionary_file=None, clear_mem_ncells=1000, ): """ Initialize in silico perturber. **Parameters:** perturb_type : {"delete", "overexpress", "inhibit", "activate"} | Type of perturbation. | "delete": delete gene from rank value encoding | "overexpress": move gene to front of rank value encoding | *(TBA)* "inhibit": move gene to lower quartile of rank value encoding | *(TBA)* "activate": move gene to higher quartile of rank value encoding *(TBA)* perturb_rank_shift : None, {1,2,3} | Number of quartiles by which to shift rank of gene. | For example, if perturb_type="activate" and perturb_rank_shift=1: | genes in 4th quartile will move to middle of 3rd quartile. | genes in 3rd quartile will move to middle of 2nd quartile. | genes in 2nd quartile will move to middle of 1st quartile. | genes in 1st quartile will move to front of rank value encoding. | For example, if perturb_type="inhibit" and perturb_rank_shift=2: | genes in 1st quartile will move to middle of 3rd quartile. | genes in 2nd quartile will move to middle of 4th quartile. | genes in 3rd or 4th quartile will move to bottom of rank value encoding. genes_to_perturb : "all", list | Default is perturbing each gene detected in each cell in the dataset. | Otherwise, may provide a list of ENSEMBL IDs of genes to perturb. | If gene list is provided, then perturber will only test perturbing them all together | (rather than testing each possible combination of the provided genes). combos : {0,1} | Whether to perturb genes individually (0) or in pairs (1). anchor_gene : None, str | ENSEMBL ID of gene to use as anchor in combination perturbations. | For example, if combos=1 and anchor_gene="ENSG00000148400": | anchor gene will be perturbed in combination with each other gene. model_type : {"Pretrained", "GeneClassifier", "CellClassifier", "MTLCellClassifier", "MTLCellClassifier-Quantized"} | Whether model is the pretrained Geneformer or a fine-tuned gene, cell, or multitask cell classifier (+/- 8bit quantization). num_classes : int | If model is a gene or cell classifier, specify number of classes it was trained to classify. | For the pretrained Geneformer model, number of classes is 0 as it is not a classifier. emb_mode : {"cls", "cell", "cls_and_gene","cell_and_gene"} | Whether to output impact of perturbation on CLS token, cell, and/or gene embeddings. | Gene embedding shifts only available as compared to original cell, not comparing to goal state. cell_emb_style : "mean_pool" | Method for summarizing cell embeddings if not using CLS token. | Currently only option is mean pooling of gene embeddings for given cell. filter_data : None, dict | Default is to use all input data for in silico perturbation study. | Otherwise, dictionary specifying .dataset column name and list of values to filter by. cell_states_to_model : None, dict | Cell states to model if testing perturbations that achieve goal state change. | Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states | state_key: key specifying name of column in .dataset that defines the start/goal states | start_state: value in the state_key column that specifies the start state | goal_state: value in the state_key column taht specifies the goal end state | alt_states: list of values in the state_key column that specify the alternate end states | For example: {"state_key": "disease", | "start_state": "dcm", | "goal_state": "nf", | "alt_states": ["hcm", "other1", "other2"]} state_embs_dict : None, dict | Embedding positions of each cell state to model shifts from/towards (e.g. mean or median). | Dictionary with keys specifying each possible cell state to model. | Values are target embedding positions as torch.tensor. | For example: {"nf": emb_nf, | "hcm": emb_hcm, | "dcm": emb_dcm, | "other1": emb_other1, | "other2": emb_other2} max_ncells : None, int | Maximum number of cells to test. | If None, will test all cells. cell_inds_to_perturb : "all", list | Default is perturbing each cell in the dataset. | Otherwise, may provide a dict of indices of cells to perturb with keys start_ind and end_ind. | start_ind: the first index to perturb. | end_ind: the last index to perturb (exclusive). | Indices will be selected *after* the filter_data criteria and sorting. | Useful for splitting extremely large datasets across separate GPUs. emb_layer : {-1, 0} | Embedding layer to use for quantification. | 0: last layer (recommended for questions closely tied to model's training objective) | -1: 2nd to last layer (recommended for questions requiring more general representations) forward_batch_size : int | Batch size for forward pass. nproc : int | Number of CPU processes to use. token_dictionary_file : Path | Path to pickle file containing token dictionary (Ensembl ID:token). clear_mem_ncells : int | Clear memory every n cells. """ try: set_start_method("spawn") except RuntimeError: pass self.perturb_type = perturb_type self.perturb_rank_shift = perturb_rank_shift self.genes_to_perturb = genes_to_perturb self.combos = combos self.anchor_gene = anchor_gene if self.genes_to_perturb == "all": self.perturb_group = False else: self.perturb_group = True if (self.anchor_gene is not None) or (self.combos != 0): self.anchor_gene = None self.combos = 0 logger.warning( "anchor_gene set to None and combos set to 0. " "If providing list of genes to perturb, " "list of genes_to_perturb will be perturbed together, " "without anchor gene or combinations." ) self.model_type = model_type self.num_classes = num_classes self.emb_mode = emb_mode self.cell_emb_style = cell_emb_style self.filter_data = filter_data self.cell_states_to_model = cell_states_to_model self.state_embs_dict = state_embs_dict self.max_ncells = max_ncells self.cell_inds_to_perturb = cell_inds_to_perturb self.emb_layer = emb_layer self.forward_batch_size = forward_batch_size self.nproc = nproc self.token_dictionary_file = token_dictionary_file self.clear_mem_ncells = clear_mem_ncells self.validate_options() # load token dictionary (Ensembl IDs:token) if self.token_dictionary_file is None: token_dictionary_file = TOKEN_DICTIONARY_FILE with open(token_dictionary_file, "rb") as f: self.gene_token_dict = pickle.load(f) self.token_gene_dict = {v: k for k, v in self.gene_token_dict.items()} self.pad_token_id = self.gene_token_dict.get("") self.cls_token_id = self.gene_token_dict.get("") self.eos_token_id = self.gene_token_dict.get("") # Identify if special token is present in the token dictionary if (self.cls_token_id is not None) and (self.eos_token_id is not None): self.special_token = True else: if "cls" in self.emb_mode: logger.error(f"emb_mode set to {self.emb_mode} but or token not in token dictionary.") raise self.special_token = False if self.anchor_gene is None: self.anchor_token = None else: try: self.anchor_token = [self.gene_token_dict[self.anchor_gene]] except KeyError: logger.error(f"Anchor gene {self.anchor_gene} not in token dictionary.") raise if self.genes_to_perturb == "all": self.tokens_to_perturb = "all" else: missing_genes = [ gene for gene in self.genes_to_perturb if gene not in self.gene_token_dict.keys() ] if len(missing_genes) == len(self.genes_to_perturb): logger.error( "None of the provided genes to perturb are in token dictionary." ) raise elif len(missing_genes) > 0: logger.warning( f"Genes to perturb {missing_genes} are not in token dictionary." ) self.tokens_to_perturb = [ self.gene_token_dict.get(gene) for gene in self.genes_to_perturb ] def validate_options(self): # first disallow options under development if self.perturb_type in ["inhibit", "activate"]: logger.error( "In silico inhibition and activation currently under development. " "Current valid options for 'perturb_type': 'delete' or 'overexpress'" ) raise if (self.combos > 0) and (self.anchor_gene is None): logger.error( "Combination perturbation without anchor gene is currently under development. " "Currently, must provide anchor gene for combination perturbation." ) raise # confirm arguments are within valid options and compatible with each other for attr_name, valid_options in self.valid_option_dict.items(): attr_value = self.__dict__[attr_name] if type(attr_value) not in {list, dict}: if attr_value in valid_options: continue if attr_name in ["anchor_gene"]: if type(attr_name) in {str}: continue valid_type = False for option in valid_options: if (option in [bool, int, list, dict, str]) and isinstance( attr_value, option ): valid_type = True break if valid_type: continue logger.error( f"Invalid option for {attr_name}. " f"Valid options for {attr_name}: {valid_options}" ) raise if self.perturb_type in ["delete", "overexpress"]: if self.perturb_rank_shift is not None: if self.perturb_type == "delete": logger.warning( "perturb_rank_shift set to None. " "If perturb type is delete then gene is deleted entirely " "rather than shifted by quartile" ) elif self.perturb_type == "overexpress": logger.warning( "perturb_rank_shift set to None. " "If perturb type is overexpress then gene is moved to front " "of rank value encoding rather than shifted by quartile" ) self.perturb_rank_shift = None if (self.anchor_gene is not None) and (self.emb_mode == "cell_and_gene"): self.emb_mode = "cell" logger.warning( "emb_mode set to 'cell'. " "Currently, analysis with anchor gene " "only outputs effect on cell embeddings." ) if self.cell_states_to_model is not None: pu.validate_cell_states_to_model(self.cell_states_to_model) if self.anchor_gene is not None: self.anchor_gene = None logger.warning( "anchor_gene set to None. " "Currently, anchor gene not available " "when modeling multiple cell states." ) if self.state_embs_dict is None: logger.error( "state_embs_dict must be provided for mode with cell_states_to_model. " "Format is dictionary with keys specifying each possible cell state to model. " "Values are target embedding positions as torch.tensor." ) raise for state_emb in self.state_embs_dict.values(): if not torch.is_tensor(state_emb): logger.error( "state_embs_dict must be dictionary with values being torch.tensor." ) raise keys_absent = [] for k, v in self.cell_states_to_model.items(): if (k == "start_state") or (k == "goal_state"): if v not in self.state_embs_dict.keys(): keys_absent.append(v) if k == "alt_states": for state in v: if state not in self.state_embs_dict.keys(): keys_absent.append(state) if len(keys_absent) > 0: logger.error( "Each start_state, goal_state, and alt_states in cell_states_to_model " "must be a key in state_embs_dict with the value being " "the state's embedding position as torch.tensor. " f"Missing keys: {keys_absent}" ) raise if self.perturb_type in ["inhibit", "activate"]: if self.perturb_rank_shift is None: logger.error( "If perturb_type is inhibit or activate then " "quartile to shift by must be specified." ) raise if self.filter_data is not None: for key, value in self.filter_data.items(): if not isinstance(value, list): self.filter_data[key] = [value] logger.warning( "Values in filter_data dict must be lists. " f"Changing {key} value to list ([{value}])." ) if self.cell_inds_to_perturb != "all": if set(self.cell_inds_to_perturb.keys()) != {"start", "end"}: logger.error( "If cell_inds_to_perturb is a dictionary, keys must be 'start' and 'end'." ) raise if ( self.cell_inds_to_perturb["start"] < 0 or self.cell_inds_to_perturb["end"] < 0 ): logger.error("cell_inds_to_perturb must be positive.") raise def perturb_data( self, model_directory, input_data_file, output_directory, output_prefix ): """ Perturb genes in input data and save as results in output_directory. **Parameters:** model_directory : Path | Path to directory containing model input_data_file : Path | Path to directory containing .dataset inputs output_directory : Path | Path to directory where perturbation data will be saved as batched pickle files output_prefix : str | Prefix for output files """ ### format output path ### output_path_prefix = os.path.join( output_directory, f"in_silico_{self.perturb_type}_{output_prefix}" ) ### load model and define parameters ### model = pu.load_model( self.model_type, self.num_classes, model_directory, mode="eval" ) self.max_len = pu.get_model_input_size(model) layer_to_quant = pu.quant_layers(model) + self.emb_layer ### filter input data ### # general filtering of input data based on filter_data argument filtered_input_data = pu.load_and_filter( self.filter_data, self.nproc, input_data_file ) # Ensure emb_mode is cls if first token of the filtered input data is cls token if self.special_token: if (filtered_input_data["input_ids"][0][0] == self.cls_token_id) and ("cls" not in self.emb_mode): logger.error( "Emb mode 'cls' or 'cls_and_gene' required when first token is ." ) raise if ("cls" in self.emb_mode): if (filtered_input_data["input_ids"][0][0] != self.cls_token_id) or (filtered_input_data["input_ids"][0][-1] != self.eos_token_id): logger.error( "Emb mode 'cls' and 'cls_and_gene' require that first token is and last token is ." ) raise filtered_input_data = self.apply_additional_filters(filtered_input_data) if self.perturb_group is True: if (self.special_token) and ("cls" in self.emb_mode): self.isp_perturb_set_special( model, filtered_input_data, layer_to_quant, output_path_prefix ) else: self.isp_perturb_set( model, filtered_input_data, layer_to_quant, output_path_prefix ) else: if (self.special_token) and ("cls" in self.emb_mode): self.isp_perturb_all_special( model, filtered_input_data, layer_to_quant, output_path_prefix ) else: self.isp_perturb_all( model, filtered_input_data, layer_to_quant, output_path_prefix ) def apply_additional_filters(self, filtered_input_data): # additional filtering of input data dependent on isp mode if self.cell_states_to_model is not None: # filter for cells with start_state and log result filtered_input_data = pu.filter_data_by_start_state( filtered_input_data, self.cell_states_to_model, self.nproc ) if (self.tokens_to_perturb != "all") and (self.perturb_type != "overexpress"): # filter for cells with tokens_to_perturb and log result filtered_input_data = pu.filter_data_by_tokens_and_log( filtered_input_data, self.tokens_to_perturb, self.nproc, "genes_to_perturb", ) if self.anchor_token is not None: # filter for cells with anchor gene and log result filtered_input_data = pu.filter_data_by_tokens_and_log( filtered_input_data, self.anchor_token, self.nproc, "anchor_gene" ) # downsample and sort largest to smallest to encounter memory constraints earlier filtered_input_data = pu.downsample_and_sort( filtered_input_data, self.max_ncells ) # slice dataset if cells_inds_to_perturb is not "all" if self.cell_inds_to_perturb != "all": filtered_input_data = pu.slice_by_inds_to_perturb( filtered_input_data, self.cell_inds_to_perturb ) return filtered_input_data def isp_perturb_set( self, model, filtered_input_data: Dataset, layer_to_quant: int, output_path_prefix: str, ): def make_group_perturbation_batch(example): example_input_ids = example["input_ids"] example["tokens_to_perturb"] = self.tokens_to_perturb indices_to_perturb = [ example_input_ids.index(token) if token in example_input_ids else None for token in self.tokens_to_perturb ] indices_to_perturb = [ item for item in indices_to_perturb if item is not None ] if len(indices_to_perturb) > 0: example["perturb_index"] = indices_to_perturb else: # -100 indicates tokens to overexpress are not present in rank value encoding example["perturb_index"] = [-100] if self.perturb_type == "delete": example = pu.delete_indices(example) elif self.perturb_type == "overexpress": example = pu.overexpress_tokens(example, self.max_len, self.special_token) example["n_overflow"] = pu.calc_n_overflow( self.max_len, example["length"], self.tokens_to_perturb, indices_to_perturb, ) return example total_batch_length = len(filtered_input_data) if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } perturbed_data = filtered_input_data.map( make_group_perturbation_batch, num_proc=self.nproc ) if self.perturb_type == "overexpress": filtered_input_data = filtered_input_data.add_column( "n_overflow", perturbed_data["n_overflow"] ) # remove overflow genes from original data so that embeddings are comparable # i.e. if original cell has genes 0:2047 and you want to overexpress new gene 2048, # then the perturbed cell will be 2048+0:2046 so we compare it to an original cell 0:2046. # (otherwise we will be modeling the effect of both deleting 2047 and adding 2048, # rather than only adding 2048) filtered_input_data = filtered_input_data.map( pu.truncate_by_n_overflow, num_proc=self.nproc ) if self.emb_mode == "cell_and_gene": stored_gene_embs_dict = defaultdict(list) # iterate through batches for i in trange(0, total_batch_length, self.forward_batch_size): max_range = min(i + self.forward_batch_size, total_batch_length) inds_select = [i for i in range(i, max_range)] minibatch = filtered_input_data.select(inds_select) perturbation_batch = perturbed_data.select(inds_select) if self.cell_emb_style == "mean_pool": full_original_emb = get_embs( model, minibatch, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, token_gene_dict=self.token_gene_dict, summary_stat=None, silent=True, ) indices_to_perturb = perturbation_batch["perturb_index"] # remove indices that were perturbed original_emb = pu.remove_perturbed_indices_set( full_original_emb, self.perturb_type, indices_to_perturb, self.tokens_to_perturb, minibatch["length"], ) full_perturbation_emb = get_embs( model, perturbation_batch, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, token_gene_dict=self.token_gene_dict, summary_stat=None, silent=True, ) # remove overexpressed genes if self.perturb_type == "overexpress": perturbation_emb = full_perturbation_emb[ :, len(self.tokens_to_perturb) :, : ] elif self.perturb_type == "delete": perturbation_emb = full_perturbation_emb[ :, : max(perturbation_batch["length"]), : ] n_perturbation_genes = perturbation_emb.size()[1] # if no goal states, the cosine similarties are the mean of gene cosine similarities if ( self.cell_states_to_model is None or self.emb_mode == "cell_and_gene" ): gene_cos_sims = pu.quant_cos_sims( perturbation_emb, original_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="gene", ) # if there are goal states, the cosine similarities are the cell cosine similarities if self.cell_states_to_model is not None: original_cell_emb = pu.mean_nonpadding_embs( full_original_emb, torch.tensor(minibatch["length"], device="cuda"), dim=1, ) perturbation_cell_emb = pu.mean_nonpadding_embs( full_perturbation_emb, torch.tensor(perturbation_batch["length"], device="cuda"), dim=1, ) cell_cos_sims = pu.quant_cos_sims( perturbation_cell_emb, original_cell_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="cell", ) # get cosine similarities in gene embeddings # if getting gene embeddings, need gene names if self.emb_mode == "cell_and_gene": gene_list = minibatch["input_ids"] # need to truncate gene_list gene_list = [ [g for g in genes if g not in self.tokens_to_perturb][ :n_perturbation_genes ] for genes in gene_list ] for cell_i, genes in enumerate(gene_list): for gene_j, affected_gene in enumerate(genes): if len(self.genes_to_perturb) > 1: tokens_to_perturb = tuple(self.tokens_to_perturb) else: tokens_to_perturb = self.tokens_to_perturb[0] # fill in the gene cosine similarities try: stored_gene_embs_dict[ (tokens_to_perturb, affected_gene) ].append(gene_cos_sims[cell_i, gene_j].item()) except KeyError: stored_gene_embs_dict[ (tokens_to_perturb, affected_gene) ] = gene_cos_sims[cell_i, gene_j].item() else: gene_list = None if self.cell_states_to_model is None: # calculate the mean of the gene cosine similarities for cell shift # tensor of nonpadding lengths for each cell if self.perturb_type == "overexpress": # subtract number of genes that were overexpressed # since they are removed before getting cos sims n_overexpressed = len(self.tokens_to_perturb) nonpadding_lens = [ x - n_overexpressed for x in perturbation_batch["length"] ] else: nonpadding_lens = perturbation_batch["length"] cos_sims_data = pu.mean_nonpadding_embs( gene_cos_sims, torch.tensor(nonpadding_lens, device="cuda") ) cos_sims_dict = self.update_perturbation_dictionary( cos_sims_dict, cos_sims_data, gene_list, ) else: cos_sims_data = cell_cos_sims for state in cos_sims_dict.keys(): cos_sims_dict[state] = self.update_perturbation_dictionary( cos_sims_dict[state], cos_sims_data[state], gene_list, ) del minibatch del perturbation_batch del original_emb del perturbation_emb del cos_sims_data torch.cuda.empty_cache() pu.write_perturbation_dictionary( cos_sims_dict, f"{output_path_prefix}_cell_embs_dict_{self.tokens_to_perturb}", ) if self.emb_mode == "cell_and_gene": pu.write_perturbation_dictionary( stored_gene_embs_dict, f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}", ) def isp_perturb_set_special( self, model, filtered_input_data: Dataset, layer_to_quant: int, output_path_prefix: str, ): def make_group_perturbation_batch(example): example_input_ids = example["input_ids"] example["tokens_to_perturb"] = self.tokens_to_perturb indices_to_perturb = [ example_input_ids.index(token) if token in example_input_ids else None for token in self.tokens_to_perturb ] indices_to_perturb = [ item for item in indices_to_perturb if item is not None ] if len(indices_to_perturb) > 0: example["perturb_index"] = indices_to_perturb else: # -100 indicates tokens to overexpress are not present in rank value encoding example["perturb_index"] = [-100] if self.perturb_type == "delete": example = pu.delete_indices(example) elif self.perturb_type == "overexpress": example = pu.overexpress_tokens(example, self.max_len, self.special_token) example["n_overflow"] = pu.calc_n_overflow( self.max_len, example["length"], self.tokens_to_perturb, indices_to_perturb, ) return example total_batch_length = len(filtered_input_data) if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } perturbed_data = filtered_input_data.map( make_group_perturbation_batch, num_proc=self.nproc ) if self.perturb_type == "overexpress": filtered_input_data = filtered_input_data.add_column( "n_overflow", perturbed_data["n_overflow"] ) filtered_input_data = filtered_input_data.map( pu.truncate_by_n_overflow_special, num_proc=self.nproc ) if self.emb_mode == "cls_and_gene": stored_gene_embs_dict = defaultdict(list) # iterate through batches for i in trange(0, total_batch_length, self.forward_batch_size): max_range = min(i + self.forward_batch_size, total_batch_length) inds_select = [i for i in range(i, max_range)] minibatch = filtered_input_data.select(inds_select) perturbation_batch = perturbed_data.select(inds_select) ##### CLS Embedding Mode ##### if self.emb_mode == "cls": indices_to_perturb = perturbation_batch["perturb_index"] original_cls_emb = get_embs( model, minibatch, "cls", layer_to_quant, self.pad_token_id, self.forward_batch_size, token_gene_dict=self.token_gene_dict, summary_stat=None, silent=True, ) perturbation_cls_emb = get_embs( model, perturbation_batch, "cls", layer_to_quant, self.pad_token_id, self.forward_batch_size, token_gene_dict=self.token_gene_dict, summary_stat=None, silent=True, ) # Calculate the cosine similarities cls_cos_sims = pu.quant_cos_sims( perturbation_cls_emb, original_cls_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="cell") # Update perturbation dictionary if self.cell_states_to_model is None: cos_sims_dict = self.update_perturbation_dictionary( cos_sims_dict, cls_cos_sims, gene_list = None, ) else: for state in cos_sims_dict.keys(): cos_sims_dict[state] = self.update_perturbation_dictionary( cos_sims_dict[state], cls_cos_sims[state], gene_list = None, ) ##### CLS and Gene Embedding Mode ##### elif self.emb_mode == "cls_and_gene": full_original_emb = get_embs( model, minibatch, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) indices_to_perturb = perturbation_batch["perturb_index"] # remove indices that were perturbed original_emb = pu.remove_perturbed_indices_set( full_original_emb, self.perturb_type, indices_to_perturb, self.tokens_to_perturb, minibatch["length"], ) full_perturbation_emb = get_embs( model, perturbation_batch, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) # remove special tokens and padding original_emb = original_emb[:, 1:-1, :] if self.perturb_type == "overexpress": perturbation_emb = full_perturbation_emb[:,1+len(self.tokens_to_perturb):-1,:] elif self.perturb_type == "delete": perturbation_emb = full_perturbation_emb[:,1:max(perturbation_batch["length"])-1,:] n_perturbation_genes = perturbation_emb.size()[1] gene_cos_sims = pu.quant_cos_sims( perturbation_emb, original_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="gene", ) # get cls emb original_cls_emb = full_original_emb[:,0,:] perturbation_cls_emb = full_perturbation_emb[:,0,:] cls_cos_sims = pu.quant_cos_sims( perturbation_cls_emb, original_cls_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="cell", ) # get cosine similarities in gene embeddings # since getting gene embeddings, need gene names gene_list = minibatch["input_ids"] # need to truncate gene_list genes_to_exclude = self.tokens_to_perturb + [self.cls_token_id, self.eos_token_id] gene_list = [ [g for g in genes if g not in genes_to_exclude][ :n_perturbation_genes ] for genes in gene_list ] for cell_i, genes in enumerate(gene_list): for gene_j, affected_gene in enumerate(genes): if len(self.genes_to_perturb) > 1: tokens_to_perturb = tuple(self.tokens_to_perturb) else: tokens_to_perturb = self.tokens_to_perturb[0] # fill in the gene cosine similarities try: stored_gene_embs_dict[ (tokens_to_perturb, affected_gene) ].append(gene_cos_sims[cell_i, gene_j].item()) except KeyError: stored_gene_embs_dict[ (tokens_to_perturb, affected_gene) ] = gene_cos_sims[cell_i, gene_j].item() if self.cell_states_to_model is None: cos_sims_dict = self.update_perturbation_dictionary( cos_sims_dict, cls_cos_sims, gene_list = None, ) else: for state in cos_sims_dict.keys(): cos_sims_dict[state] = self.update_perturbation_dictionary( cos_sims_dict[state], cls_cos_sims[state], gene_list = None, ) del full_original_emb del original_emb del full_perturbation_emb del perturbation_emb del gene_cos_sims del original_cls_emb del perturbation_cls_emb del cls_cos_sims del minibatch del perturbation_batch torch.cuda.empty_cache() pu.write_perturbation_dictionary( cos_sims_dict, f"{output_path_prefix}_cell_embs_dict_{self.tokens_to_perturb}", ) if self.emb_mode == "cls_and_gene": pu.write_perturbation_dictionary( stored_gene_embs_dict, f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}", ) def isp_perturb_all( self, model, filtered_input_data: Dataset, layer_to_quant: int, output_path_prefix: str, ): pickle_batch = -1 if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } if self.emb_mode == "cell_and_gene": stored_gene_embs_dict = defaultdict(list) num_inds_perturbed = 1 + self.combos for h in trange(len(filtered_input_data)): example_cell = filtered_input_data.select([h]) full_original_emb = get_embs( model, example_cell, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) if self.cell_states_to_model is not None: original_cell_emb = pu.compute_nonpadded_cell_embedding( full_original_emb, "mean_pool" ) # gene_list is used to assign cos sims back to genes gene_list = example_cell["input_ids"][0][:] # need to remove the anchor gene if self.anchor_token is not None: for token in self.anchor_token: gene_list.remove(token) # index 0 is not overexpressed so remove if self.perturb_type == "overexpress": gene_list = gene_list[ num_inds_perturbed: ] # remove perturbed index for gene list dict perturbed_gene_dict = { gene: gene_list[:i] + gene_list[i + 1 :] for i, gene in enumerate(gene_list) } perturbation_batch, indices_to_perturb = pu.make_perturbation_batch( example_cell, self.perturb_type, self.tokens_to_perturb, self.anchor_token, self.combos, self.nproc, ) ispall_total_batch_length = len(perturbation_batch) for i in trange(0, ispall_total_batch_length, self.forward_batch_size, leave=False): ispall_max_range = min(i + self.forward_batch_size, ispall_total_batch_length) perturbation_minibatch = perturbation_batch.select([i for i in range(i, ispall_max_range)]) indices_to_perturb_mini = indices_to_perturb[i : ispall_max_range] gene_list_mini = gene_list[i : ispall_max_range] # only perturbed genes from this minibatch full_perturbation_emb = get_embs( model, perturbation_minibatch, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) del perturbation_minibatch # need to remove overexpressed gene to quantify cosine shifts if self.perturb_type == "overexpress": perturbation_emb = full_perturbation_emb[:, num_inds_perturbed:, :] elif self.perturb_type == "delete": perturbation_emb = full_perturbation_emb if self.cell_states_to_model is None or self.emb_mode == "cell_and_gene": original_emb_minibatch = pu.make_comparison_batch( full_original_emb, indices_to_perturb_mini, perturb_group=False ) gene_cos_sims = pu.quant_cos_sims( perturbation_emb, original_emb_minibatch, self.cell_states_to_model, self.state_embs_dict, emb_mode="gene", ) del original_emb_minibatch if self.cell_states_to_model is not None: perturbation_cell_emb = pu.compute_nonpadded_cell_embedding( full_perturbation_emb, "mean_pool" ) cell_cos_sims = pu.quant_cos_sims( perturbation_cell_emb, original_cell_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="cell", ) del perturbation_cell_emb if self.emb_mode == "cell_and_gene": for perturbation_i, perturbed_gene in enumerate(gene_list_mini): for gene_j, affected_gene in enumerate( perturbed_gene_dict[perturbed_gene] ): try: stored_gene_embs_dict[ (perturbed_gene, affected_gene) ].append(gene_cos_sims[perturbation_i, gene_j].item()) except KeyError: stored_gene_embs_dict[ (perturbed_gene, affected_gene) ] = gene_cos_sims[perturbation_i, gene_j].item() del full_perturbation_emb if self.cell_states_to_model is None: cos_sims_data = torch.mean(gene_cos_sims, dim=1) cos_sims_dict = self.update_perturbation_dictionary( cos_sims_dict, cos_sims_data, gene_list_mini, ) else: cos_sims_data = cell_cos_sims for state in cos_sims_dict.keys(): cos_sims_dict[state] = self.update_perturbation_dictionary( cos_sims_dict[state], cos_sims_data[state], gene_list_mini, ) # save dict to disk every self.clear_mem_ncells/10 (default 100) simulated cells if i % self.clear_mem_ncells/10 == 0: pu.write_perturbation_dictionary( cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}", ) if self.emb_mode == "cell_and_gene": pu.write_perturbation_dictionary( stored_gene_embs_dict, f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}", ) # reset and clear memory every self.clear_mem_ncells (default 1000) simulated cells or at the end of the example cell if i % self.clear_mem_ncells == 0: pickle_batch += 1 if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } if self.emb_mode == "cell_and_gene": stored_gene_embs_dict = defaultdict(list) torch.cuda.empty_cache() pu.write_perturbation_dictionary( cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}" ) if self.emb_mode == "cell_and_gene": pu.write_perturbation_dictionary( stored_gene_embs_dict, f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}", ) pickle_batch = -1 if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } if self.emb_mode == "cell_and_gene": stored_gene_embs_dict = defaultdict(list) # clear memory between cells del perturbation_batch del full_original_emb if self.cell_states_to_model is not None: del original_cell_emb torch.cuda.empty_cache() def isp_perturb_all_special( self, model, filtered_input_data: Dataset, layer_to_quant: int, output_path_prefix: str, ): pickle_batch = -1 if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } if self.emb_mode == "cls_and_gene": stored_gene_embs_dict = defaultdict(list) num_inds_perturbed = 1 + self.combos for h in trange(len(filtered_input_data)): example_cell = filtered_input_data.select([h]) # get original example cell cls and/or gene embs for comparison if self.emb_mode == "cls": original_cls_emb = get_embs( model, example_cell, "cls", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) elif self.emb_mode == "cls_and_gene": full_original_emb = get_embs( model, example_cell, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) original_cls_emb = full_original_emb[:,0,:].clone().detach() # gene_list is used to assign cos sims back to genes gene_list = example_cell["input_ids"][0][:] # need to remove special tokens for token in [self.cls_token_id, self.eos_token_id]: gene_list.remove(token) # need to remove the anchor gene if self.anchor_token is not None: for token in self.anchor_token: gene_list.remove(token) # index 0 is not overexpressed so remove if self.perturb_type == "overexpress": gene_list = gene_list[ num_inds_perturbed: ] # remove perturbed index for gene list dict perturbed_gene_dict = { gene: gene_list[:i] + gene_list[i + 1 :] for i, gene in enumerate(gene_list) } perturbation_batch, indices_to_perturb = pu.make_perturbation_batch_special( example_cell, self.perturb_type, self.tokens_to_perturb, self.anchor_token, self.combos, self.nproc, ) ispall_total_batch_length = len(perturbation_batch) for i in trange(0, ispall_total_batch_length, self.forward_batch_size, leave=False): ispall_max_range = min(i + self.forward_batch_size, ispall_total_batch_length) perturbation_minibatch = perturbation_batch.select([i for i in range(i, ispall_max_range)]) indices_to_perturb_mini = indices_to_perturb[i : ispall_max_range] gene_list_mini = gene_list[i : ispall_max_range] # only perturbed genes from this minibatch ##### CLS Embedding Mode ##### if self.emb_mode == "cls": # Extract cls embeddings from perturbed cells perturbation_cls_emb = get_embs( model, perturbation_minibatch, "cls", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) # Calculate cosine similarities cls_cos_sims = pu.quant_cos_sims( perturbation_cls_emb, original_cls_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="cell", ) if self.cell_states_to_model is None: cos_sims_dict = self.update_perturbation_dictionary( cos_sims_dict, cls_cos_sims, gene_list_mini, ) else: for state in cos_sims_dict.keys(): cos_sims_dict[state] = self.update_perturbation_dictionary( cos_sims_dict[state], cls_cos_sims[state], gene_list_mini, ) del perturbation_minibatch del perturbation_cls_emb del cls_cos_sims ##### CLS and Gene Embedding Mode ##### elif self.emb_mode == "cls_and_gene": full_perturbation_emb = get_embs( model, perturbation_minibatch, "gene", layer_to_quant, self.pad_token_id, self.forward_batch_size, self.token_gene_dict, summary_stat=None, silent=True, ) # need to remove overexpressed gene and cls/eos to quantify cosine shifts if self.perturb_type == "overexpress": perturbation_emb = full_perturbation_emb[:, 1+num_inds_perturbed:-1, :].clone().detach() elif self.perturb_type == "delete": perturbation_emb = full_perturbation_emb[:, 1:-1, :].clone().detach() original_emb_minibatch = pu.make_comparison_batch( full_original_emb, indices_to_perturb_mini, perturb_group=False ) original_emb_minibatch = original_emb_minibatch[:, 1:-1, :].clone().detach() gene_cos_sims = pu.quant_cos_sims( perturbation_emb, original_emb_minibatch, self.cell_states_to_model, self.state_embs_dict, emb_mode="gene", ) for perturbation_i, perturbed_gene in enumerate(gene_list_mini): for gene_j, affected_gene in enumerate( perturbed_gene_dict[perturbed_gene] ): try: stored_gene_embs_dict[ (perturbed_gene, affected_gene) ].append(gene_cos_sims[perturbation_i, gene_j].item()) except KeyError: stored_gene_embs_dict[ (perturbed_gene, affected_gene) ] = gene_cos_sims[perturbation_i, gene_j].item() # get cls emb perturbation_cls_emb = full_perturbation_emb[:,0,:].clone().detach() cls_cos_sims = pu.quant_cos_sims( perturbation_cls_emb, original_cls_emb, self.cell_states_to_model, self.state_embs_dict, emb_mode="cell", ) if self.cell_states_to_model is None: cos_sims_dict = self.update_perturbation_dictionary( cos_sims_dict, cls_cos_sims, gene_list_mini, ) else: for state in cos_sims_dict.keys(): cos_sims_dict[state] = self.update_perturbation_dictionary( cos_sims_dict[state], cls_cos_sims[state], gene_list_mini, ) del perturbation_minibatch del original_emb_minibatch del full_perturbation_emb del perturbation_emb del perturbation_cls_emb del cls_cos_sims del gene_cos_sims # save dict to disk every self.clear_mem_ncells/10 (default 100) simulated cells if i % max(1,self.clear_mem_ncells/10) == 0: pu.write_perturbation_dictionary( cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}", ) if self.emb_mode == "cls_and_gene": pu.write_perturbation_dictionary( stored_gene_embs_dict, f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}", ) # reset and clear memory every self.clear_mem_ncells (default 1000) simulated cells or at the end of the example cell if i % self.clear_mem_ncells == 0: pickle_batch += 1 if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } if self.emb_mode == "cls_and_gene": stored_gene_embs_dict = defaultdict(list) torch.cuda.empty_cache() pu.write_perturbation_dictionary( cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}" ) if self.emb_mode == "cls_and_gene": pu.write_perturbation_dictionary( stored_gene_embs_dict, f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}", ) pickle_batch = -1 if self.cell_states_to_model is None: cos_sims_dict = defaultdict(list) else: cos_sims_dict = { state: defaultdict(list) for state in pu.get_possible_states(self.cell_states_to_model) } if self.emb_mode == "cls_and_gene": stored_gene_embs_dict = defaultdict(list) # clear memory between cells del perturbation_batch del original_cls_emb if self.emb_mode == "cls_and_gene": del full_original_emb torch.cuda.empty_cache() def update_perturbation_dictionary( self, cos_sims_dict: defaultdict, cos_sims_data: torch.Tensor, gene_list=None, ): if gene_list is not None and cos_sims_data.shape[0] != len(gene_list): logger.error( f"len(cos_sims_data.shape[0]) != len(gene_list). \n \ {cos_sims_data.shape[0]=}.\n \ {len(gene_list)=}." ) raise if self.perturb_group is True: if len(self.tokens_to_perturb) > 1: perturbed_genes = tuple(self.tokens_to_perturb) else: perturbed_genes = self.tokens_to_perturb[0] # if cell embeddings, can just append # shape will be (batch size, 1) cos_sims_data = torch.squeeze(cos_sims_data).tolist() # handle case of single cell left if not isinstance(cos_sims_data, list): cos_sims_data = [cos_sims_data] cos_sims_dict[(perturbed_genes, "cell_emb")] += cos_sims_data else: for i, cos in enumerate(cos_sims_data.tolist()): cos_sims_dict[(gene_list[i], "cell_emb")].append(cos) return cos_sims_dict