from .imports import * from .data import preload_and_process_data, get_data_loader from .train import objective, train_model from .model import GeneformerMultiTask from .utils import save_model import random def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def run_manual_tuning(config): # Set seed for reproducibility set_seed(config["seed"]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_dataset, train_cell_id_mapping, val_dataset, val_cell_id_mapping, num_labels_list = preload_and_process_data(config) train_loader = get_data_loader(train_dataset, config['batch_size']) val_loader = get_data_loader(val_dataset, config['batch_size']) # Print the manual hyperparameters being used print("\nManual hyperparameters being used:") for key, value in config["manual_hyperparameters"].items(): print(f"{key}: {value}") print() # Add an empty line for better readability # Use the manual hyperparameters for key, value in config["manual_hyperparameters"].items(): config[key] = value # Train the model val_loss, trained_model = train_model(config, device, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list) print(f"\nValidation loss with manual hyperparameters: {val_loss}") # Save the trained model model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask") save_model(trained_model, model_save_directory) # Save the hyperparameters hyperparams_to_save = { **config["manual_hyperparameters"], "dropout_rate": config["dropout_rate"], "use_task_weights": config["use_task_weights"], "task_weights": config["task_weights"], "max_layers_to_freeze": config["max_layers_to_freeze"], "use_attention_pooling": config["use_attention_pooling"] } hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json") with open(hyperparams_path, 'w') as f: json.dump(hyperparams_to_save, f) print(f"Manual hyperparameters saved to {hyperparams_path}") return val_loss def run_optuna_study(config): # Set seed for reproducibility set_seed(config["seed"]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_dataset, train_cell_id_mapping, val_dataset, val_cell_id_mapping, num_labels_list = preload_and_process_data(config) train_loader = get_data_loader(train_dataset, config['batch_size']) val_loader = get_data_loader(val_dataset, config['batch_size']) if config["use_manual_hyperparameters"]: train_model(config, device, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list) else: objective_with_config_and_data = functools.partial( objective, train_loader=train_loader, val_loader=val_loader, train_cell_id_mapping=train_cell_id_mapping, val_cell_id_mapping=val_cell_id_mapping, num_labels_list=num_labels_list, config=config, device=device ) study = optuna.create_study( direction='minimize', # Minimize validation loss study_name=config["study_name"], #storage=config["storage"], load_if_exists=True ) study.optimize( objective_with_config_and_data, n_trials=config["n_trials"] ) # After finding the best trial best_params = study.best_trial.params best_task_weights = study.best_trial.user_attrs["task_weights"] print("Saving the best model and its hyperparameters...") # Saving model as before best_model = GeneformerMultiTask( config["pretrained_path"], num_labels_list, dropout_rate=best_params["dropout_rate"], use_task_weights=config["use_task_weights"], task_weights=best_task_weights ) # Get the best model state dictionary best_model_state_dict = study.best_trial.user_attrs["model_state_dict"] # Remove the "module." prefix from the state dictionary keys if present best_model_state_dict = {k.replace("module.", ""): v for k, v in best_model_state_dict.items()} # Load the modified state dictionary into the model, skipping unexpected keys best_model.load_state_dict(best_model_state_dict, strict=False) model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask") save_model(best_model, model_save_directory) # Additionally, save the best hyperparameters and task weights hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json") with open(hyperparams_path, 'w') as f: json.dump({**best_params, "task_weights": best_task_weights}, f) print(f"Best hyperparameters and task weights saved to {hyperparams_path}")