from .imports import * from sklearn.metrics import f1_score, accuracy_score from sklearn.preprocessing import LabelEncoder from transformers import BertModel, BertConfig, AutoConfig import os import shutil def save_model(model, model_save_directory): if not os.path.exists(model_save_directory): os.makedirs(model_save_directory) # Get the state dict if isinstance(model, nn.DataParallel): model_state_dict = model.module.state_dict() # Use model.module to access the underlying model else: model_state_dict = model.state_dict() # Remove the "module." prefix from the keys if present model_state_dict = {k.replace("module.", ""): v for k, v in model_state_dict.items()} model_save_path = os.path.join(model_save_directory, "pytorch_model.bin") torch.save(model_state_dict, model_save_path) # Save the model configuration if isinstance(model, nn.DataParallel): model.module.config.to_json_file(os.path.join(model_save_directory, "config.json")) else: model.config.to_json_file(os.path.join(model_save_directory, "config.json")) print(f"Model and configuration saved to {model_save_directory}") def calculate_task_specific_metrics(task_true_labels, task_pred_labels): task_metrics = {} for task_name in task_true_labels.keys(): true_labels = task_true_labels[task_name] pred_labels = task_pred_labels[task_name] f1 = f1_score(true_labels, pred_labels, average='macro') accuracy = accuracy_score(true_labels, pred_labels) task_metrics[task_name] = {'f1': f1, 'accuracy': accuracy} return task_metrics def calculate_combined_f1(combined_labels, combined_preds): # Initialize the LabelEncoder le = LabelEncoder() # Fit and transform combined labels and predictions to numerical values le.fit(combined_labels + combined_preds) encoded_true_labels = le.transform(combined_labels) encoded_pred_labels = le.transform(combined_preds) # Print out the mapping for sanity check print("\nLabel Encoder Mapping:") for index, class_label in enumerate(le.classes_): print(f"'{class_label}': {index}") # Calculate accuracy accuracy = accuracy_score(encoded_true_labels, encoded_pred_labels) # Calculate F1 Macro score f1 = f1_score(encoded_true_labels, encoded_pred_labels, average='macro') return f1, accuracy def save_model_without_heads(original_model_save_directory): # Create a new directory for the model without heads new_model_save_directory = original_model_save_directory + "_No_Heads" if not os.path.exists(new_model_save_directory): os.makedirs(new_model_save_directory) # Load the model state dictionary model_state_dict = torch.load(os.path.join(original_model_save_directory, "pytorch_model.bin")) # Initialize a new BERT model without the classification heads config = BertConfig.from_pretrained(os.path.join(original_model_save_directory, "config.json")) model_without_heads = BertModel(config) # Filter the state dict to exclude classification heads model_without_heads_state_dict = {k: v for k, v in model_state_dict.items() if not k.startswith("classification_heads")} # Load the filtered state dict into the model model_without_heads.load_state_dict(model_without_heads_state_dict, strict=False) # Save the model without heads model_save_path = os.path.join(new_model_save_directory, "pytorch_model.bin") torch.save(model_without_heads.state_dict(), model_save_path) # Copy the configuration file shutil.copy(os.path.join(original_model_save_directory, "config.json"), new_model_save_directory) print(f"Model without classification heads saved to {new_model_save_directory}") def get_layer_freeze_range(pretrained_path): """ Dynamically determines the number of layers to freeze based on the model depth from its configuration. Args: pretrained_path (str): Path to the pretrained model directory or model identifier. Returns: dict: A dictionary with 'min' and 'max' keys indicating the range of layers to freeze. """ if pretrained_path: config = AutoConfig.from_pretrained(pretrained_path) total_layers = config.num_hidden_layers return {"min": 0, "max": total_layers - 1} else: return {"min": 0, "max": 0}