--- library_name: transformers license: other base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: MATH_training_response_Qwen2.5_32B results: [] --- # MATH_training_response_Qwen2.5_32B This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the MATH_training_response_Qwen2.5_32B dataset. It achieves the following results on the evaluation set: - Loss: 0.1453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1523 | 0.3559 | 200 | 0.1489 | | 0.1438 | 0.7117 | 400 | 0.1424 | | 0.044 | 1.0676 | 600 | 0.1530 | | 0.0352 | 1.4235 | 800 | 0.1460 | | 0.0432 | 1.7794 | 1000 | 0.1451 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3