--- library_name: peft base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 8481e47f-34ca-4125-88f8-20de99fe72ab results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - de20d4a9ed95de07_train_data.json ds_type: json format: custom path: /workspace/input_data/de20d4a9ed95de07_train_data.json type: field_input: premise field_instruction: question field_output: choice1 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp_bucket_cap_mb: 25 ddp_find_unused_parameters: false debug: null deepspeed: null device_map: auto do_eval: true eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: dada22231/8481e47f-34ca-4125-88f8-20de99fe72ab hub_strategy: checkpoint hub_token: null hub_username: dada22231 learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: '0': 75GiB '1': 75GiB '2': 75GiB '3': 75GiB max_steps: 50 micro_batch_size: 4 mlflow_experiment_name: null model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true repository_id: dada22231/8481e47f-34ca-4125-88f8-20de99fe72ab resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: null wandb_mode: online wandb_name: 8481e47f-34ca-4125-88f8-20de99fe72ab wandb_project: Public_TuningSN wandb_runid: 8481e47f-34ca-4125-88f8-20de99fe72ab warmup_ratio: 0.03 weight_decay: 0.01 xformers_attention: null ```

# 8481e47f-34ca-4125-88f8-20de99fe72ab This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - training_steps: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.364 | 0.6667 | 1 | 10.3593 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1