--- license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - f1 model-index: - name: xlnet-large-cased-airlines-news-multi-label results: [] --- # xlnet-large-cased-airlines-news-multi-label This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2329 - F1: 0.9001 - Roc Auc: 0.6501 - Hamming: 0.9145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Hamming | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:| | No log | 1.0 | 128 | 0.2866 | 0.8594 | 0.5 | 0.9041 | | No log | 2.0 | 256 | 0.2520 | 0.8955 | 0.5943 | 0.9130 | | No log | 3.0 | 384 | 0.2431 | 0.8984 | 0.6493 | 0.9130 | | 0.3656 | 4.0 | 512 | 0.2384 | 0.8984 | 0.6622 | 0.9115 | | 0.3656 | 5.0 | 640 | 0.2329 | 0.9001 | 0.6501 | 0.9145 | | 0.3656 | 6.0 | 768 | 0.2353 | 0.9000 | 0.6699 | 0.9130 | | 0.3656 | 7.0 | 896 | 0.2336 | 0.8959 | 0.6735 | 0.9071 | | 0.2788 | 8.0 | 1024 | 0.2318 | 0.8957 | 0.6606 | 0.9086 | | 0.2788 | 9.0 | 1152 | 0.2327 | 0.8961 | 0.6606 | 0.9086 | | 0.2788 | 10.0 | 1280 | 0.2317 | 0.8975 | 0.6545 | 0.9100 | | 0.2788 | 11.0 | 1408 | 0.2311 | 0.8975 | 0.6545 | 0.9100 | | 0.2659 | 12.0 | 1536 | 0.2309 | 0.8982 | 0.6554 | 0.9115 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1