--- language: - en library_name: peft tags: - generated_from_trainer datasets: - GEM/viggo base_model: microsoft/phi-2 model-index: - name: phi-2 results: [] --- # phi-2 This model is a fine-tuned version of [microsoftl](https://huggingface.co/microsoftl) on the GEM/viggo dataset. It achieves the following results on the evaluation set: - Loss: 0.2330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.917 | 0.04 | 50 | 1.4649 | | 0.7037 | 0.08 | 100 | 0.4905 | | 0.4209 | 0.12 | 150 | 0.3564 | | 0.3534 | 0.16 | 200 | 0.3127 | | 0.311 | 0.2 | 250 | 0.2940 | | 0.2944 | 0.24 | 300 | 0.2798 | | 0.2838 | 0.27 | 350 | 0.2710 | | 0.2744 | 0.31 | 400 | 0.2634 | | 0.2657 | 0.35 | 450 | 0.2577 | | 0.2692 | 0.39 | 500 | 0.2513 | | 0.263 | 0.43 | 550 | 0.2475 | | 0.2664 | 0.47 | 600 | 0.2451 | | 0.2535 | 0.51 | 650 | 0.2421 | | 0.2594 | 0.55 | 700 | 0.2396 | | 0.234 | 0.59 | 750 | 0.2379 | | 0.2383 | 0.63 | 800 | 0.2361 | | 0.2419 | 0.67 | 850 | 0.2350 | | 0.2448 | 0.71 | 900 | 0.2337 | | 0.241 | 0.74 | 950 | 0.2332 | | 0.219 | 0.78 | 1000 | 0.2330 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0