--- license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - hf-asr-leaderboard datasets: - librispeech_asr model-index: - name: hubert-base-libri-clean-ft100h-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: '8.1938' - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: '16.9783' language: - en --- # hubert-base-libri-clean-ft100h-v3 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.1120 - Wer: 0.1332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.201 | 0.14 | 250 | 3.9799 | 1.0 | | 2.8893 | 0.28 | 500 | 3.4838 | 1.0 | | 2.8603 | 0.42 | 750 | 3.3505 | 1.0 | | 2.7216 | 0.56 | 1000 | 2.1194 | 0.9989 | | 1.3372 | 0.7 | 1250 | 0.8124 | 0.6574 | | 0.8238 | 0.84 | 1500 | 0.5712 | 0.5257 | | 0.6449 | 0.98 | 1750 | 0.4442 | 0.4428 | | 0.5241 | 1.12 | 2000 | 0.3442 | 0.3672 | | 0.4458 | 1.26 | 2250 | 0.2850 | 0.3186 | | 0.3959 | 1.4 | 2500 | 0.2507 | 0.2882 | | 0.3641 | 1.54 | 2750 | 0.2257 | 0.2637 | | 0.3307 | 1.68 | 3000 | 0.2044 | 0.2434 | | 0.2996 | 1.82 | 3250 | 0.1969 | 0.2313 | | 0.2794 | 1.96 | 3500 | 0.1823 | 0.2193 | | 0.2596 | 2.1 | 3750 | 0.1717 | 0.2096 | | 0.2563 | 2.24 | 4000 | 0.1653 | 0.2000 | | 0.2532 | 2.38 | 4250 | 0.1615 | 0.1971 | | 0.2376 | 2.52 | 4500 | 0.1559 | 0.1916 | | 0.2341 | 2.66 | 4750 | 0.1494 | 0.1855 | | 0.2102 | 2.8 | 5000 | 0.1464 | 0.1781 | | 0.2222 | 2.94 | 5250 | 0.1399 | 0.1732 | | 0.2081 | 3.08 | 5500 | 0.1450 | 0.1707 | | 0.1963 | 3.22 | 5750 | 0.1337 | 0.1655 | | 0.2107 | 3.36 | 6000 | 0.1344 | 0.1633 | | 0.1866 | 3.5 | 6250 | 0.1339 | 0.1611 | | 0.186 | 3.64 | 6500 | 0.1311 | 0.1563 | | 0.1703 | 3.78 | 6750 | 0.1307 | 0.1537 | | 0.1819 | 3.92 | 7000 | 0.1277 | 0.1555 | | 0.176 | 4.06 | 7250 | 0.1280 | 0.1515 | | 0.1837 | 4.2 | 7500 | 0.1249 | 0.1504 | | 0.1678 | 4.34 | 7750 | 0.1236 | 0.1480 | | 0.1624 | 4.48 | 8000 | 0.1194 | 0.1456 | | 0.1631 | 4.62 | 8250 | 0.1215 | 0.1462 | | 0.1736 | 4.76 | 8500 | 0.1192 | 0.1451 | | 0.1752 | 4.9 | 8750 | 0.1206 | 0.1432 | | 0.1578 | 5.04 | 9000 | 0.1151 | 0.1415 | | 0.1537 | 5.18 | 9250 | 0.1185 | 0.1402 | | 0.1771 | 5.33 | 9500 | 0.1165 | 0.1414 | | 0.1481 | 5.47 | 9750 | 0.1152 | 0.1413 | | 0.1509 | 5.61 | 10000 | 0.1152 | 0.1382 | | 0.146 | 5.75 | 10250 | 0.1133 | 0.1385 | | 0.1464 | 5.89 | 10500 | 0.1139 | 0.1371 | | 0.1442 | 6.03 | 10750 | 0.1162 | 0.1365 | | 0.128 | 6.17 | 11000 | 0.1147 | 0.1371 | | 0.1381 | 6.31 | 11250 | 0.1148 | 0.1378 | | 0.1343 | 6.45 | 11500 | 0.1113 | 0.1363 | | 0.1325 | 6.59 | 11750 | 0.1134 | 0.1355 | | 0.1442 | 6.73 | 12000 | 0.1142 | 0.1358 | | 0.1286 | 6.87 | 12250 | 0.1133 | 0.1352 | | 0.1349 | 7.01 | 12500 | 0.1129 | 0.1344 | | 0.1338 | 7.15 | 12750 | 0.1131 | 0.1328 | | 0.1403 | 7.29 | 13000 | 0.1124 | 0.1338 | | 0.1314 | 7.43 | 13250 | 0.1141 | 0.1335 | | 0.1283 | 7.57 | 13500 | 0.1124 | 0.1332 | | 0.1347 | 7.71 | 13750 | 0.1107 | 0.1332 | | 0.1195 | 7.85 | 14000 | 0.1119 | 0.1332 | | 0.1326 | 7.99 | 14250 | 0.1120 | 0.1332 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1