--- datasets: - danjacobellis/LSDIR_540 --- # Wavelet Learned Lossy Compression (WaLLoC) WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 2D signals (e.g. grayscale, RGB, or hyperspectral images). Support for 1D and 3D signals is in progress. ## Installation 1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/) 2. Install WaLLoC and other dependencies via pip ```pip install walloc PyWavelets pytorch-wavelets``` ## Pre-trained checkpoints Pre-trained checkpoints are available on [Hugging Face](https://huggingface.co/danjacobellis/walloc). ## Training Access to training code is provided by request via [email.](mailto:danjacobellis@utexas.edu) ## Usage example ```python import os import torch import matplotlib.pyplot as plt import numpy as np from PIL import Image from IPython.display import display from torchvision.transforms import ToPILImage, PILToTensor from walloc.walloc import Walloc class Args: pass ``` ### Load the model from a pre-trained checkpoint ```wget https://hf.co/danjacobellis/walloc/resolve/main/v0.6.3_ext.pth``` ```python device = "cpu" checkpoint = torch.load("v0.6.3_ext.pth",map_location="cpu") args = checkpoint['args'] codec = Walloc( channels = args.channels, J = args.J, N = args.N, latent_dim = args.latent_dim, latent_bits = 5 ) codec.load_state_dict(checkpoint['model_state_dict']) codec = codec.to(device) ``` ### Load an example image ```wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"``` ```python img = Image.open("kodim05.png") img ``` ![png](README_files/README_6_0.png) ### Full encoding and decoding pipeline with .forward() * If `codec.eval()` is called, the latent is rounded to nearest integer. * If `codec.train()` is called, uniform noise is added instead of rounding. ```python with torch.no_grad(): codec.eval() x = PILToTensor()(img).to(torch.float) x = (x/255 - 0.5).unsqueeze(0).to(device) x_hat, _, _ = codec(x) ToPILImage()(x_hat[0]+0.5) ``` ![png](README_files/README_8_0.png) ### Accessing latents ```python with torch.no_grad(): codec.eval() X = codec.wavelet_analysis(x,J=codec.J) Y = codec.encoder(X) X_hat = codec.decoder(Y) x_hat = codec.wavelet_synthesis(X_hat,J=codec.J) print(f"dimensionality reduction: {x.numel()/Y.numel()}×") ``` dimensionality reduction: 12.0× ```python Y.unique() ``` tensor([-15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., -0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.]) ```python plt.figure(figsize=(5,3),dpi=150) plt.hist( Y.flatten().numpy(), range=(-17.5,17.5), bins=35, density=True, width=0.8); plt.title("Histogram of latents") plt.xticks(range(-15,16,5)); ``` ![png](README_files/README_12_0.png) # Lossless compression of latents using PNG ```python def concatenate_channels(x): batch_size, N, h, w = x.shape n = int(N**0.5) if n*n != N: raise ValueError("Number of channels must be a perfect square.") x = x.view(batch_size, n, n, h, w) x = x.permute(0, 1, 3, 2, 4).contiguous() x = x.view(batch_size, 1, n*h, n*w) return x def split_channels(x, N): batch_size, _, H, W = x.shape n = int(N**0.5) h = H // n w = W // n x = x.view(batch_size, n, h, n, w) x = x.permute(0, 1, 3, 2, 4).contiguous() x = x.view(batch_size, N, h, w) return x def to_bytes(x, n_bits): max_value = 2**(n_bits - 1) - 1 min_value = -max_value - 1 if x.min() < min_value or x.max() > max_value: raise ValueError(f"Tensor values should be in the range [{min_value}, {max_value}].") return (x + (max_value + 1)).to(torch.uint8) def from_bytes(x, n_bits): max_value = 2**(n_bits - 1) - 1 return (x.to(torch.float32) - (max_value + 1)) def latent_to_pil(latent, n_bits): latent_bytes = to_bytes(latent, n_bits) concatenated_latent = concatenate_channels(latent_bytes) pil_images = [] for i in range(concatenated_latent.shape[0]): pil_image = Image.fromarray(concatenated_latent[i][0].numpy(), mode='L') pil_images.append(pil_image) return pil_images def pil_to_latent(pil_images, N, n_bits): tensor_images = [PILToTensor()(img).unsqueeze(0) for img in pil_images] tensor_images = torch.cat(tensor_images, dim=0) split_latent = split_channels(tensor_images, N) latent = from_bytes(split_latent, n_bits) return latent ``` ```python Y_pil = latent_to_pil(Y,5) Y_pil[0] ``` ![png](README_files/README_15_0.png) ```python Y_pil[0].save('latent.png') print("compression_ratio: ", x.numel()/os.path.getsize("latent.png")) ``` compression_ratio: 20.307596963280485 ```python Y2 = pil_to_latent(Y_pil, 16, 5) (Y == Y2).sum()/Y.numel() ``` tensor(1.) ```python !jupyter nbconvert --to markdown README.ipynb ``` [NbConvertApp] Converting notebook README.ipynb to markdown [NbConvertApp] Support files will be in README_files/ [NbConvertApp] Writing 5751 bytes to README.md