--- datasets: - danjacobellis/LSDIR_540 - danjacobellis/musdb_segments --- # Wavelet Learned Lossy Compression - [Project page and documentation](https://danjacobellis.net/walloc) - [Paper: "Learned Compression for Compressed Learning"](https://arxiv.org/abs/2412.09405) - [Additional code accompanying the paper](https://github.com/danjacobellis/lccl) WaLLoC (Wavelet-Domain Learned Lossy Compression) is an architecture for learned compression that simultaneously satisfies three key requirements of compressed-domain learning: 1. **Computationally efficient encoding** to reduce overhead in compressed-domain learning and support resource constrained mobile and remote sensors. WaLLoC uses a wavelet packet transform to expose signal redundancies prior to autoencoding. This allows us to replace the encoding DNN with a single linear layer (<100k parameters) without significant loss in quality. WaLLoC incurs <5% of the encoding cost compared to other neural codecs. 2. **High compression ratio** for storage and transmission efficiency. Lossy codecs typically achieve high compression with a combination of quantization and entropy coding. However, naive quantization of autoencoder latents leads to unpredictable and unbounded distortion. Instead, we apply additive noise during training as an entropy bottleneck, leading to quantization-resiliant latents. When combined with entropy coding, this provides nearly 12× higher compression ratio compared to the VAE used in Stable Diffusion 3, despite offering a higher degree of dimensionality reduction and similar quality. 3. **Dimensionality reduction** to accelerate compressed-domain modeling. WaLLoC’s encoder projects high-dimensional signal patches to low-dimensional latent representations, providing a reduction of up to 20×. This allows WaLLoC to be used as a drop-in replacement for resolution reduction while providing superior detail preservation and downstream accuracy. WaLLoC does not require perceptual or adversarial losses to represent high-frequency detail, making it compatible with a wide variety of signal types. It currently supports 1D and 2D signals, including mono, stereo, and multi-channel audio and grayscale, RGB, and hyperspectral images. ![](https://danjacobellis.net/walloc/_images/walloc.svg) WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers. ![](https://danjacobellis.net/walloc/_images/radar.svg) Comparison of WaLLoC with other autoencoder designs for RGB Images and stereo audio. ![](https://danjacobellis.net/walloc/_images/walloc_4x.svg) ![](https://danjacobellis.net/walloc/_images/sd3.svg) ![](https://danjacobellis.net/walloc/_images/walloc_16x.svg) ![](https://danjacobellis.net/walloc/_images/audio_comparison.svg) ``` @inproceedings{jacobellis2024learned, title={Learned Compression for Compressed Learning}, author={Jacobellis, Dan and Yadwadkar, Neeraja J.}, booktitle={IEEE Data Compression Conference (DCC)}, note={Preprint} year={2024}, url={http://danjacobellis.net/walloc} } ``` ## Installation 1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/) 2. Install WaLLoC and other dependencies via pip ```pip install walloc PyWavelets pytorch-wavelets``` ## Image compression ```python import os import torch import json import matplotlib.pyplot as plt import numpy as np from types import SimpleNamespace from PIL import Image, ImageEnhance from IPython.display import display from torchvision.transforms import ToPILImage, PILToTensor from walloc import walloc from walloc.walloc import latent_to_pil, pil_to_latent ``` ### Load the model from a pre-trained checkpoint ```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.pth``` ```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.json``` ```python device = "cpu" codec_config = SimpleNamespace(**json.load(open("RGB_16x.json"))) checkpoint = torch.load("RGB_16x.pth",map_location="cpu",weights_only=False) codec = walloc.Codec2D( channels = codec_config.channels, J = codec_config.J, Ne = codec_config.Ne, Nd = codec_config.Nd, latent_dim = codec_config.latent_dim, latent_bits = codec_config.latent_bits, lightweight_encode = codec_config.lightweight_encode ) codec.load_state_dict(checkpoint['model_state_dict']) codec = codec.to(device) codec.eval(); ``` ### Load an example image ```wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"``` ```python img = Image.open("kodim05.png") img ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_13_0.png) ### Full encoding and decoding pipeline with .forward() * If `codec.eval()` is called, the latent is rounded to nearest integer. * If `codec.train()` is called, uniform noise is added instead of rounding. ```python with torch.no_grad(): codec.eval() x = PILToTensor()(img).to(torch.float) x = (x/255 - 0.5).unsqueeze(0).to(device) x_hat, _, _ = codec(x) ToPILImage()(x_hat[0]+0.5) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_15_0.png) ### Accessing latents ```python with torch.no_grad(): X = codec.wavelet_analysis(x,J=codec.J) z = codec.encoder[0:2](X) z_hat = codec.encoder[2](z) X_hat = codec.decoder(z_hat) x_rec = codec.wavelet_synthesis(X_hat,J=codec.J) print(f"dimensionality reduction: {x.numel()/z.numel()}×") ``` dimensionality reduction: 16.0× ```python plt.figure(figsize=(5,3),dpi=150) plt.hist( z.flatten().numpy(), range=(-25,25), bins=151, density=True, ); plt.title("Histogram of latents") plt.xlim([-25,25]); ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_18_0.png) # Lossless compression of latents ```python def scale_for_display(img, n_bits): scale_factor = (2**8 - 1) / (2**n_bits - 1) lut = [int(i * scale_factor) for i in range(2**n_bits)] channels = img.split() scaled_channels = [ch.point(lut * 2**(8-n_bits)) for ch in channels] return Image.merge(img.mode, scaled_channels) ``` ### Single channel PNG (L) ```python z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4)) z_pil = latent_to_pil(z_padded,codec.latent_bits,1) display(scale_for_display(z_pil[0], codec.latent_bits)) z_pil[0].save('latent.png') png = [Image.open("latent.png")] z_rec = pil_to_latent(png,16,codec.latent_bits,1) assert(z_rec.equal(z_padded)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.png")) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_22_0.png) compression_ratio: 26.729991842653856 ### Three channel WebP (RGB) ```python z_pil = latent_to_pil(z_hat,codec.latent_bits,3) display(scale_for_display(z_pil[0], codec.latent_bits)) z_pil[0].save('latent.webp',lossless=True) webp = [Image.open("latent.webp")] z_rec = pil_to_latent(webp,12,codec.latent_bits,3) assert(z_rec.equal(z_hat)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.webp")) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_24_0.png) compression_ratio: 28.811254396248536 ### Four channel TIF (CMYK) ```python z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4)) z_pil = latent_to_pil(z_padded,codec.latent_bits,4) display(scale_for_display(z_pil[0], codec.latent_bits)) z_pil[0].save('latent.tif',compression="tiff_adobe_deflate") tif = [Image.open("latent.tif")] z_rec = pil_to_latent(tif,16,codec.latent_bits,4) assert(z_rec.equal(z_padded)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.tif")) ``` ![jpeg](README_files/README_26_0.jpg) compression_ratio: 21.04034530731638 # Audio Compression ```python import io import os import torch import torchaudio import json import matplotlib.pyplot as plt from types import SimpleNamespace from PIL import Image from datasets import load_dataset from einops import rearrange from IPython.display import Audio from walloc import walloc ``` ### Load the model from a pre-trained checkpoint ```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.pth``` ```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.json``` ```python codec_config = SimpleNamespace(**json.load(open("stereo_5x.json"))) checkpoint = torch.load("stereo_5x.pth",map_location="cpu",weights_only=False) codec = walloc.Codec1D( channels = codec_config.channels, J = codec_config.J, Ne = codec_config.Ne, Nd = codec_config.Nd, latent_dim = codec_config.latent_dim, latent_bits = codec_config.latent_bits, lightweight_encode = codec_config.lightweight_encode, post_filter = codec_config.post_filter ) codec.load_state_dict(checkpoint['model_state_dict']) codec.eval(); ``` /home/dan/g/lib/python3.12/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. WeightNorm.apply(module, name, dim) ### Load example audio track ```python MUSDB = load_dataset("danjacobellis/musdb_segments_val",split='validation') audio_buff = io.BytesIO(MUSDB[40]['audio_mix']['bytes']) x, fs = torchaudio.load(audio_buff,normalize=False) x = x.to(torch.float) x = x - x.mean() max_abs = x.abs().max() x = x / (max_abs + 1e-8) x = x/2 ``` ```python Audio(x[:,:2**20],rate=44100) ``` ### Full encoding and decoding pipeline with .forward() * If `codec.eval()` is called, the latent is rounded to nearest integer. * If `codec.train()` is called, uniform noise is added instead of rounding. ```python with torch.no_grad(): codec.eval() x_hat, _, _ = codec(x.unsqueeze(0)) ``` ```python Audio(x_hat[0,:,:2**20],rate=44100) ``` ### Accessing latents ```python with torch.no_grad(): X = codec.wavelet_analysis(x.unsqueeze(0),J=codec.J) z = codec.encoder[0:2](X) z_hat = codec.encoder[2](z) X_hat = codec.decoder(z_hat) x_rec = codec.wavelet_synthesis(X_hat,J=codec.J) print(f"dimensionality reduction: {x.numel()/z.numel():.4g}×") ``` dimensionality reduction: 4.74× ```python plt.figure(figsize=(5,3),dpi=150) plt.hist( z.flatten().numpy(), range=(-25,25), bins=151, density=True, ); plt.title("Histogram of latents") plt.xlim([-25,25]); ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_41_0.png) # Lossless compression of latents ```python def pad(audio, p=2**16): B,C,L = audio.shape padding_size = (p - (L % p)) % p if padding_size > 0: audio = torch.nn.functional.pad(audio, (0, padding_size), mode='constant', value=0) return audio with torch.no_grad(): L = x.shape[-1] x_padded = pad(x.unsqueeze(0), 2**16) X = codec.wavelet_analysis(x_padded,codec.J) z = codec.encoder(X) ℓ = z.shape[-1] z = pad(z,128) z = rearrange(z, 'b c (w h) -> b c w h', h=128).to("cpu") webp = walloc.latent_to_pil(z,codec.latent_bits,3)[0] buff = io.BytesIO() webp.save(buff, format='WEBP', lossless=True) webp_bytes = buff.getbuffer() ``` ```python print("compression_ratio: ", x.numel()/len(webp_bytes)) webp ``` compression_ratio: 9.83650170496386 ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_44_1.png) # Decoding ```python with torch.no_grad(): z_hat = walloc.pil_to_latent( [Image.open(buff)], codec.latent_dim, codec.latent_bits, 3) X_hat = codec.decoder(rearrange(z_hat, 'b c h w -> b c (h w)')[:,:,:ℓ]) x_hat = codec.wavelet_synthesis(X_hat,codec.J) x_hat = codec.post(x_hat) x_hat = codec.clamp(x_hat[0,:,:L]) ``` ```python start, end = 0, 1000 plt.figure(figsize=(8, 3), dpi=180) plt.plot(x[0, start:end], alpha=0.5, c='b', label='Ch.1 (Uncompressed)') plt.plot(x_hat[0, start:end], alpha=0.5, c='g', label='Ch.1 (WaLLoC)') plt.plot(x[1, start:end], alpha=0.5, c='r', label='Ch.2 (Uncompressed)') plt.plot(x_hat[1, start:end], alpha=0.5, c='purple', label='Ch.2 (WaLLoC)') plt.xlim([400,1000]) plt.ylim([-0.6,0.3]) plt.legend(loc='lower center') plt.box(False) plt.xticks([]) plt.yticks([]); ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_47_0.png) ```python !jupyter nbconvert --to markdown README.ipynb ``` [NbConvertApp] Converting notebook README.ipynb to markdown [NbConvertApp] Support files will be in README_files/ [NbConvertApp] Writing 12900 bytes to README.md ```python !sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md ``` ```python !sed -i 's|src="README_files/\(README_[0-9]*\.wav\)"|src="https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1"|g' README.md ```