--- license: mit tags: - generated_from_trainer datasets: - commonsense_qa metrics: - accuracy model_index: - name: aristo-roberta-finetuned-csqa results: - dataset: name: commonsense_qa type: commonsense_qa args: default metric: name: Accuracy type: accuracy value: 0.7305487394332886 --- # aristo-roberta-finetuned-csqa This model is a fine-tuned version of [LIAMF-USP/aristo-roberta](https://huggingface.co/LIAMF-USP/aristo-roberta) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.2187 - Accuracy: 0.7305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.131 | 1.0 | 609 | 0.7109 | 0.7232 | | 0.6957 | 2.0 | 1218 | 0.6912 | 0.7346 | | 0.459 | 3.0 | 1827 | 0.8364 | 0.7305 | | 0.3063 | 4.0 | 2436 | 1.0595 | 0.7322 | | 0.2283 | 5.0 | 3045 | 1.2187 | 0.7305 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3