""" Evaluate Medical Tests Classification in LLMS """ ## Setup #### Load the API key and libaries. import json import pandas as pd import os import openai from dotenv import load_dotenv, find_dotenv import argparse import re import subprocess import time ### Download LLAMA model: def download_and_rename(url, filename): """Downloads a file from the given URL and renames it to the given new file name. Args: url: The URL of the file to download. new_file_name: The new file name for the downloaded file. """ os.makedirs(os.path.dirname(filename), exist_ok=True) print(f'Downloading the weights of the model: {url} ...') subprocess.run(["wget", "-q", "-O", filename, url]) print(f'Done!') def download_hugging_face_model(model_version='Llama-2-7b'): if model_version not in ['Llama-2-7b', 'Llama-2-13b', 'Llama-2-70b', 'Mistral-7b']: raise ValueError("Options for Llama model should be 7b, 13b or 70b, or Mistral-7b") MODEL_URL = { 'Llama-2-7b': 'https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q8_0.gguf', 'Llama-2-13b': 'https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q8_0.gguf', 'Llama-2-70b': 'https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF/resolve/main/llama-2-70b-chat.Q5_0.gguf', 'Mistral-7b': 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q8_0.gguf' } MODEL_URL = MODEL_URL[model_version] model_path = f'Models/{model_version}.gguf' if os.path.exists(model_path): confirmation = input(f"The model file '{model_path}' already exists. Do you want to overwrite it? (yes/no): ").strip().lower() if confirmation != 'yes': print("Model installation aborted.") return model_path download_and_rename(MODEL_URL, model_path) return model_path ### Model GPT: def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0, max_tokens=500): try: response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, request_timeout=10 ) except: time.sleep(60) response = get_completion_from_messages(messages, model=model, temperature=temperature, max_tokens=max_tokens) return response return response.choices[0].message["content"] def get_completion_from_messages_hf(messages, model): response = model(messages)[0]['generated_text'].replace(messages, '') return {'response': response} #### Model Llama 2 def get_completion_from_messages_llama(messages, model, temperature=0, max_tokens=500, reasoning=False): # Get the response: response = model.create_chat_completion( messages, temperature=temperature, max_tokens=max_tokens ) model.set_cache(None) response = response['choices'][0]['message']["content"] # Convert the string into a JSON object # Due to some problems with Llama 2 generating JSON formats, the output requires more preprocessing than GPT. try: # Use regular expressions to extract JSON json_pattern = r'\{.*\}' # Match everything between '{' and '}' match = re.search(json_pattern, response, re.DOTALL) response = match.group() # Define a regex pattern to identify unquoted string values pattern = r'("[^"]*":\s*)([A-Za-z_][A-Za-z0-9_]*)' # Use a lambda function to add quotes to unquoted string values response = re.sub(pattern, lambda m: f'{m.group(1)}"{m.group(2)}"', response) if not reasoning: # Convert from {'response': 'A' ) some text without quotes} to {'response': 'A'} # Use regular expression to extract the letter and surrounding characters match = re.search(r'"response": "([A-Da-d][^\"]*)"', response) if match: response = f'{{{match.group(0)}}}' # Convert response = json.loads(response) resp = response['response'] except: print(f'Error converting respose to json: {response}') print('Generating new response...') response = get_completion_from_messages_llama(messages, model=model, temperature=temperature, max_tokens=max_tokens, reasoning=reasoning) return response if reasoning: # Iterate through the keys of the dictionary for key in list(response.keys()): if 'reas' in key.lower(): # Update the dictionary with the new key and its corresponding value response['reasoning'] = response.pop(key) return response #### Template for the Questions def generate_question(question, LANGUAGES, REASONING, Responses=['A', 'B', 'C', 'D']): delimiter = "####" languages_text = ", ".join(LANGUAGES) if REASONING: system_message = f""" You will be provided with medical queries in this languages: {languages_text}. \ The medical query will be delimited with {delimiter} characters. Each question will have {len(Responses)} possible answer options.\ provide the letter with the answer and a short sentence answering why the answer was selected \ Provide your output in json format with the \ keys: response and reasoning. Responses: {", ".join(Responses)}. """ else: system_message = f""" You will be provided with medical queries in this languages: {languages_text}. \ The medical query will be delimited with {delimiter} characters. Each question will have {len(Responses)} possible answer options.\ Provide only the letter with the response. Provide your output in json format with: the key: response. Responses: {", ".join(Responses)}. E.g. if response is 'a', the output should be: {{"response" : "a"}} """ user_message = f"""/ {question}""" messages = [ {'role':'system', 'content': system_message}, {'role':'user', 'content': f"{delimiter}{user_message}{delimiter}"}, ] return messages def generate_template_text_generation(question, LANGUAGES, Responses=['A', 'B', 'C', 'D']): delimiter = "####" languages_text = ", ".join(LANGUAGES) messages = f"""You will be provided with medical queries in this languages: {languages_text}. \ The medical query will be delimited with {delimiter} characters. Each question will have {len(Responses)} possible answer options.Provide just the letter with the answer. Responses: {", ".join(Responses)}. Question: {delimiter}{question}{delimiter} The response is: """ return messages #### Template for the Questions def generate_question_llama(question, LANGUAGES, REASONING, Responses=['A', 'B', 'C', 'D']): delimiter = "####" out_template = "" if REASONING: output_keys = ['response', 'reasoning'] else: output_keys = ['response'] for response in Responses: response_dict = {key: f'something describing {key}' for key in output_keys} response_dict[output_keys[0]] = response response_str = ', '.join([f"'{k}': '{v}'" for k, v in response_dict.items()]) out_template += f"If response is {response}: {{ {response_str} }}\n" languages_text = ", ".join(LANGUAGES) if REASONING: system_message = f""" You will be provided with medical queries in this languages: {languages_text}. \ The medical query will be delimited with \ {delimiter} characters. Each question will have {len(Responses)} possible answer options.\ provide just the letter with the answer and a short sentence answering why the answer was selected. Provide your output in json format with the \ keys: response and reasoning. Make sure to always use the those keys, do not modify the keys. Response option: {", ".join(Responses)}. Always use the JSON format. The output shoulb be: {{"response": "Response option", "", ""}} """ else: system_message = f""" You will be provided with medical queries in this languages: {languages_text}. \ The medical query will be delimited with \ {delimiter} characters. Each question will have {len(Responses)} possible answer options.\ provide just the letter with the answer. Provide your output in json format with the \ key: response. Make sure to always use the that key, do not modify the key. Response option: {", ".join(Responses)}. Always use the JSON format. The output shoulb be: {{"response": "Response option"}} """ user_message = f"""/ {question}""" messages = [ {'role':'system', 'content': system_message}, {'role':'user', 'content': f"{delimiter}{user_message}{delimiter}"}, ] return messages def llm_language_evaluation(path='data/Portuguese.csv', model='gpt-3.5-turbo', temperature=0.0, n_repetitions=1, reasoning=False, languages=['english', 'portuguese']): # Load API key if GPT, or Model if LLAMA if 'gpt' in model: _ = load_dotenv(find_dotenv()) # read local .env file openai.api_key = os.environ['OPENAI_API_KEY'] elif 'Llama-2' in model or ('Mistral-7b' in model): model_path = download_hugging_face_model(model_version=model) from llama_cpp import Llama llm = Llama(model_path=model_path, verbose=False, n_ctx=2048) elif 'bloom': from transformers import pipeline llm = pipeline( task="text-generation", model=model, model_kwargs={"temperature": temperature, "max_length": 5}) reasoning = False else: print('Model should be a GPT or Llama-2 model') return 0 #### Load the Constants PATH = path # 'data/Portuguese.csv' MODEL = model # "gpt-3.5-turbo" TEMPERATURE = temperature # 0.0 N_REPETITIONS = n_repetitions # 1 REASONING = reasoning # False LANGUAGES = languages # ['english', 'portuguese'] if N_REPETITIONS <= 0 or (N_REPETITIONS != int(N_REPETITIONS)): print(f'N_REPETITIONS should be a positive integer, not {N_REPETITIONS}') print('N_REPETITIONS will be set to 1') N_REPETITIONS = 1 ### Questions from a csv file: df = pd.read_csv(PATH) ### Evaluate the model in question answering per language: responses = {} reasoning = {} for language in LANGUAGES: responses[language] = [[] for n in range(N_REPETITIONS)] if REASONING: reasoning[language] = [[] for n in range(N_REPETITIONS)] for row in range(df.shape[0]): print('*'*50) print(f'Question {row+1}: ') for language in LANGUAGES: print(f'Language: {language}') question = df[language][row] print('Question: ') print(question) if 'gpt' in model: messages = generate_question(question, LANGUAGES, REASONING) elif 'Llama-2' in model or ('Mistral-7b' in model): messages = generate_question_llama(question, LANGUAGES, REASONING) elif 'bloom' in model: messages = generate_template_text_generation(question, LANGUAGES) else: print('Model should be a GPT or Llama-2 model') return 0 for n in range(N_REPETITIONS): print(f'Test #{n}: ') if 'gpt' in model: response = get_completion_from_messages(messages, MODEL, TEMPERATURE) # Convert the string into a JSON object response = json.loads(response) elif 'Llama-2' in model or ('Mistral-7b' in model): response = get_completion_from_messages_llama(messages, llm, TEMPERATURE, reasoning=REASONING) elif 'bloom' in model: response = get_completion_from_messages_hf(messages, llm) else: print('Model should be a GPT or Llama-2 model') return 0 print(response) # Append to the list: responses[language][n].append(response['response']) if REASONING: reasoning[language][n].append(response['reasoning']) print('*'*50) ### Save the results in a csv file: for language in LANGUAGES: if N_REPETITIONS == 1: df[f'responses_{language}'] = responses[language][0] if REASONING: df[f'reasoning_{language}'] = reasoning[language][0] for n in range(N_REPETITIONS): df[f'responses_{language}_{n}'] = responses[language][n] if REASONING: df[f'reasoning_{language}_{n}'] = reasoning[language][n] if not os.path.exists('responses'): os.makedirs('responses') if N_REPETITIONS == 1: df.to_csv(f"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}.csv", index=False) else: df.to_csv(f"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}_{N_REPETITIONS}Repetitions.csv", index=False) def main(): # Add argparse code to handle command-line arguments parser = argparse.ArgumentParser(description="Evaluate Medical Tests Classification in LLMS") parser.add_argument("--csv_file", default="data/Portuguese.csv", help="Path to the CSV file with the questions") parser.add_argument("--model", default="gpt-3.5-turbo", help="LLM to use e.g: gpt-3.5-turbo, gpt-4, Llama-2-7b, Llama-2-13b, or Llama-2-70b") parser.add_argument("--temperature", type=float, default=0.0, help="Temperature parameter of the model between 0 and 1. Used to modifiy the model's creativity. 0 is deterministic and 1 is the most creative") parser.add_argument("--n_repetitions", type=int, default=1, help="Number of repetitions to run each experiment. Used to measure the model's hallucinations") parser.add_argument("--reasoning", action="store_true", default=False, help="Enable reasoning mode. If set to True, the model will be asked to provide a reasoning for its answer. If set to True the model uses more tokens") parser.add_argument("--languages", nargs='+', default=['english', 'portuguese'], help="List of languages") args = parser.parse_args() PATH = args.csv_file MODEL = args.model TEMPERATURE = args.temperature N_REPETITIONS = args.n_repetitions REASONING = args.reasoning LANGUAGES = args.languages llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES) if __name__ == "__main__": main()