--- language_creators: - crowdsourced - expert-generated - machine-generated language: - afr - sqi - amh - ara - aze - bel - ben - bul - cat - ceb - ces - kur - cym - dan - deu - ell - eng - epo - est - eus - fin - fra - gla - gle - glg - guj - hat - hau - heb - hin - hun - hye - ibo - ind - isl - ita - jav - jpn - kan - kat - kaz - mon - khm - kir - kor - lao - lit - ltz - lav - mal - mar - mkd - mlt - mri - mya - nld - nor - nep - sot - pus - pes - mlg - pol - por - ron - rus - sin - slk - slv - smo - sna - snd - som - spa - srp - sun - swe - swa - tam - tel - tgk - tha - tur - ukr - urd - uzb - vie - xho - yid - yor - zho - msa - zul - ace - bjn - kas - kau - min - mni - taq - nso license: apache-2.0 multilinguality: - multilingual size_categories: - 10K aya-human-annotated ```json { "id": 42, "inputs": "What day is known as Star Wars Day?", "targets": "May 4th (May the 4th be with you!)", "language": "eng", "script": "Latn", } ``` Dolly-machine-translated and dolly-human-edited - These two subsets are parallel datasets (data instances can be mapped using their `id` column). - Note that in the `dolly-machine-translated` subset, we also include the original English subset (`id 1-200`), which is translated into 101 languages. Furthermore, the field `id` can be used to match the translations of the same data instance across languages. - The `source_id` field contains the corresponding original row index from the [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset.
dolly-machine-translated ```json { "id": 2, "inputs": "How to escape from a helicopter trapped in water ?", "targets": "If you are ever trapped inside a helicopter while submerged in water, it’s best to try and remain calm until the cabin is completely underwater. It’s better to wait for pressure to be equalized, before you try to open the door or break the glass to escape.", "language": "eng", "script": "Latn", "source_id": 6060, } ```
dolly-human-edited ```json { "id": 2, "inputs": "Comment peut-on s'échapper d'un hélicoptère piégé dans l'eau ?", "targets": "-", "language": "fra", "script": "Latn", "source_id": 6060, } ```
## Statistics The toggled table below lists the breakdown of languages in each subset. ### Languages
aya-human-annotated | ISO Code | Language | Resources | |----------|----------|---------------| | `tel` | Telugu | Low | | `yor` | Yorùbá | Low | | `arb` | Arabic | High | | `tur` | Turkish | High | | `por` | Portuguese | High | | `zho` | Chinese (Simplified) | High | | `eng` | English | High |
dolly-machine-translated | ISO Code | Language | Resources | |----------|----------|-----------| | `ace` | Achinese | Low | | `afr` | Afrikaans | Mid | | `amh` | Amharic | Low | | `ara` (`arb`, `acm`, `acq`, `aeb`, `ajp`, `apc`, `ars`, `ary` & `arz`) | Arabic (Standard, Gelet Iraqi, Ta'izzi-Adeni, Tunisian, South Levantine, North Levantine, Najdi, Moroccan & Egyptian) | High | | `aze` (`azb` & `azj`) | Azerbaijani (South & North) | Low | | `bel` | Belarusian | Mid | | `ben` | Bengali | Mid | | `bjn` | Banjar | Low | | `bul` | Bulgarian | Mid | | `cat` | Catalan | High | | `ceb` | Cebuano | Mid | | `ces` | Czech | High | | `cym` | Welsh | Low | | `dan` | Danish | Mid | | `deu` | German | High | | `ell` | Greek | Mid | | `eng` | English | High | | `epo` | Esperanto | Low | | `est` | Estonian | Mid | | `eus` | Basque | High | | `fin` | Finnish | High | | `fra` | French | High | | `gla` | Scottish Gaelic | Low | | `gle` | Irish | Low | | `glg` | Galician | Mid | | `guj` | Gujarati | Low | | `hat` | Haitian Creole | Low | | `hau` | Hausa | Low | | `heb` | Hebrew | Mid | | `hin` | Hindi | High | | `hun` | Hungarian | High | | `hye` | Armenian | Low | | `ibo` | Igbo | Low | | `ind` | Indonesian | Mid | | `isl` | Icelandic | Low | | `ita` | Italian | High | | `jav` | Javanese | Low | | `jpn` | Japanese | High | | `kan` | Kannada | Low | | `kas` | Kashmiri | Low | | `kat` | Georgian | Mid | | `kau` (`knc`) | Kanuri (Central) | Low | | `kaz` | Kazakh | Mid | | `khm` | Khmer | Low | | `kir` | Kyrgyz | Low | | `kor` | Korean | High | | `kur` (`ckb` & `kmr`) | Kurdish (Central & Northern) | Low | | `lao` | Lao | Low | | `lav` (`lvs`) | Latvian (Standard) | Mid | | `lit` | Lithuanian | Mid | | `ltz` | Luxembourgish | Low | | `mal` | Malayalam | Low | | `mar` | Marathi | Low | | `min` | Minangkabau | Low | | `mkd` | Macedonian | Low | | `mlg` (`plt`) | Malagasy (Plateau) | Low | | `mlt` | Maltese | Low | | `mni` | Manipuri | Low | | `mon` (`khk`) | Mongolian (Khalkha) | Low | | `mri` | Maori | Low | | `msa` (`zsm`) | Malay (Standard) | Mid | | `mya` | Burmese | Low | | `nep` (`npi`) | Nepali | Low | | `nld` | Dutch | High | | `nor` (`nno` & `nob`) | Norwegian (Nynorsk & Bokmål) | Low | | `nso` | Northern Sotho | Low | | `pes` | Persian | High | | `pol` | Polish | High | | `por` | Portuguese | High | | `pus` (`pbt`) | Pashto (Southern) | Low | | `ron` | Romanian | Mid | | `rus` | Russian | High | | `sin` | Sinhala | Low | | `slk` | Slovak | Mid | | `slv` | Slovenian | Mid | | `smo` | Samoan | Low | | `sna` | Shona | Low | | `snd` | Sindhi | Low | | `som` | Somali | Low | | `sot` | Southern Sotho | Low | | `spa` | Spanish | High | | `sqi` (`als`) | Albanian (Tosk) | Low | | `srp` | Serbian | High | | `sun` | Sundanese | Low | | `swa` (`swh`) | Swahili (Coastal) | Low | | `swe` | Swedish | High | | `tam` | Tamil | Mid | | `taq` | Tamasheq | Low | | `tel` | Telugu | Low | | `tgk` | Tajik | Low | | `tha` | Thai | Mid | | `tur` | Turkish | High | | `ukr` | Ukrainian | Mid | | `urd` | Urdu | Mid | | `uzb` (`uzn`) | Uzbek (Nothern) | Mid | | `vie` | Vietnamese | High | | `xho` | Xhosa | Low | | `yid` (`ydd`) | Yiddish (Eastern) | Low | | `yor` | Yoruba | Low | | `zho` (+ `yue`) | Chinese (Simplified & Cantonese) | High | | `zul` | Zulu | Low |
dolly-human-edited | ISO Code | Language | Resources | |----------|----------|-----------| | `arb` | Arabic | High | | `fra` | French | High | | `hin` | Hindi | High | | `rus` | Russian | High | | `spa` | Spanish | High | | `srp` | Serbian | High |

# Motivations & Intentions - **Curation Rationale:** This evaluation suite is tailored to test the generation quality of multilingual models, with the aim of balancing language coverage and human-sourced quality. It covers prompts originally written in each language, as well as English-centric translated, and manually curated or edited prompts for a linguistically broad, but rich testbed. The list of languages was initially established from mT5 and aligned with the annotators’ language list and the NLLB translation model. # Known Limitations - **Translation Quality:** Note that the expressiveness of the `dolly-machine-translated` subset is limited by the quality of the translation model and may adversely impact an estimate of ability in languages where translations are not adequate. If this subset is used for testing, we recommend it be paired and reported with the professionally post-edited `dolly-human-edited` subset or the `aya-human-annotated` set, which, while covering only 7 languages, is entirely created by proficient target language speakers. --- # Additional Information ## Provenance - **Methods Used:** combination of original annotations by volunteers, automatic translation, and post-editing of translations by professional annotators. - **Methodology Details:** - *Source:* Original annotations from Aya dataset along with translations and post-edits of Dolly dataset - *Platform:* [Aya Annotation Platform](https://aya.for.ai/) - *Dates of Collection:* May 2023 - Dec 2023 ## Dataset Version and Maintenance - **Maintenance Status:** Actively Maintained - **Version Details:** - *Current version:* 1.0 - *Last Update:* 02/2024 - *First Release:* 02/2024 - **Maintenance Plan:** No updates planned. ## Authorship - **Publishing Organization:** [Cohere For AI](https://cohere.com/research) - **Industry Type:** Not-for-profit - Tech - **Contact Details:** https://aya.for.ai/ ## Licensing Information This dataset can be used for any purpose, whether academic or commercial, under the terms of the [Apache 2.0](https://opensource.org/license/apache-2-0) License. ## Citation Information ```bibtex @misc{singh2024aya, title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning}, author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A. Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer and Ahmet Üstün and Marzieh Fadaee and Sara Hooker}, year={2024}, eprint={2402.06619}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```