# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TIAGE: A Benchmark for Topic-Shift Aware Dialog Modeling""" import json import datasets _CITATION = """\ """ _DESCRIPTION = """\ """ _HOMEPAGE = "https://github.com/HuiyuanXie/tiage" _LICENSE = """\ """ # TODO: Add link to the official dataset URLs here # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLs = { "train": "https://huggingface.co/datasets/Coldog2333/tiage/resolve/main/train.json", "validation": "https://huggingface.co/datasets/Coldog2333/tiage/resolve/main/validation.json", "test": "https://huggingface.co/datasets/Coldog2333/tiage/resolve/main/test.json", } class TIAGEConfig(datasets.BuilderConfig): """BuilderConfig for TIAGE""" def __init__(self, **kwargs): """ Args: **kwargs: keyword arguments forwarded to super. """ super().__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.dataset_name = "tiage" class TIAGE(datasets.GeneratorBasedBuilder): """TIAGE: A Benchmark for Topic-Shift Aware Dialog Modeling""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "dial_id": datasets.Value("string"), "utterance": datasets.features.Sequence(datasets.Value("string")), "segmentation_label": datasets.features.Sequence(datasets.Value("int32")), "da": datasets.features.Sequence(datasets.Value("string")), "role": datasets.features.Sequence(datasets.Value("string")), "turn_id": datasets.features.Sequence(datasets.Value("int32")), "topic_id": datasets.features.Sequence(datasets.Value("int32")) } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_files = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]} ) ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: data = json.load(f)["dial_data"][self.dataset_name] for id_, row in enumerate(data): yield id_, { "dial_id": row["dial_id"], "utterance": [turn["utterance"] for turn in row["turns"]], "segmentation_label": [turn["segmentation_label"] for turn in row["turns"]], "da": [turn["da"] for turn in row["turns"]], "role": [turn["role"] for turn in row["turns"]], "turn_id": [turn["turn_id"] for turn in row["turns"]], "topic_id": [turn["topic_id"] for turn in row["turns"]] }