--- task_categories: - text-generation language: - en tags: - math size_categories: - 10B [ArXiv](http://arxiv.org/abs/2310.10631) | [Models](https://huggingface.co/EleutherAI/llemma_34b) | [Data](https://huggingface.co/datasets/EleutherAI/proof-pile-2) | [Code](https://github.com/EleutherAI/math-lm) | [Blog](https://blog.eleuther.ai/llemma/) | [Sample Explorer](https://llemma-demo.github.io/) [Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/) The **Proof-Pile-2** is a 55 billion token dataset of mathematical and scientific documents. This dataset was created in order to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b) models. It consists of three subsets: - `arxiv` (29B tokens): the ArXiv subset of [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) - `open-web-math` (15B tokens): The [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) dataset, which contains much of the high-quality mathematical text from the internet. - `algebraic-stack` (11B tokens): A new dataset of mathematical code, including numerical computing, computer algebra, and formal mathematics. You can download the dataset as follows ```python from datasets import load_dataset ds = load_dataset("EleutherAI/proof-pile-2") # To load only a specific subset, pass it as an argument, e.g ds_arxiv = load_dataset("EleutherAI/proof-pile-2", "arxiv") ``` ### Schema Each dataset row has the following structure ```python { "text": ..., # document text "meta": ..., # JSON string of metadata, schema specific to data source } ``` ### Dataset Contents For detailed documentation of the ArXiv and web subsets, refer to [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) and [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math). The following table enumerates the contents of the AlgebraicStack by programming language. The AlgebraicStack is filtered to only include documents that contain mathematics, as judged by hand-crafted, language-specific heuristics. | Language | AlgebraicStack tokens | |-----------|-----------------------| | Agda | 35.2 M | | C | 25.1 M | | C++ | 954.1 M | | Coq | 281.9 M | | Fortran | 724.9 M | | GAP | 3.6 M | | Haskell | 9.1 M | | Idris | 10.9 M | | Isabelle | 1,089.7 M | | Julia | 531.0 M | | Jupyter | 199.1 M | | Lean | 285.6 M | | Maple | 2.0 M | | Matlab | 65.8 M | | Python | 6,098.8 M | | R | 71.3 M | | Tex | 567.7 M | | **Total** | **10,955.7 M** | ### License We do not alter the license of any of the underlying data. ### Version History **v1.1.0**: Contains an updated version of OpenWebMath, precisely the one available at [open-web-math/open-web-math](https://huggingface.co/datasets/open-web-math/open-web-math). This version of OpenWebMath has slightly improved filtering, for example, removal of very short documents. **v1.0.0**: The data used to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b). Uses a development version of OpenWebMath. ### Citation For the entire Proof-Pile-2, cite ``` @misc{azerbayev2023llemma, title={Llemma: An Open Language Model For Mathematics}, author={Zhangir Azerbayev and Hailey Schoelkopf and Keiran Paster and Marco Dos Santos and Stephen McAleer and Albert Q. Jiang and Jia Deng and Stella Biderman and Sean Welleck}, year={2023}, eprint={2310.10631}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` For the ArXiv subset, cite ``` @software{together2023redpajama, author = {Together Computer}, title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset}, month = April, year = 2023, url = {https://github.com/togethercomputer/RedPajama-Data} } ``` For OpenWebMath, cite ``` @misc{paster2023openwebmath, title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text}, author={Keiran Paster and Marco Dos Santos and Zhangir Azerbayev and Jimmy Ba}, year={2023}, eprint={2310.06786}, archivePrefix={arXiv}, primaryClass={cs.AI} } ```