# import json # input_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/chem/chem_multiple_choice.json" # output_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/test_chem_multiple_choice.jsonl" # base_image_path = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/Multiple_Choice/Chemistry/" # # Read the input JSON file # with open(input_file, 'r') as infile: # data = json.load(infile) # # Process each entry and write to the new JSONL file # with open(output_file, 'w') as outfile: # for idx, entry in enumerate(data, start=1): # new_entry = { # "id": str(idx), # "images": [base_image_path + entry["ImagePath"] + ".png"], # "conversations": [ # {"from": "human", "value": "\n" + entry["Question"]}, # {"from": "gpt", "value": entry["Answer (final answer highlighted)"]} # ] # } # outfile.write(json.dumps(new_entry, ensure_ascii=False) + "\n") # print(f"Processing complete. The new JSONL file is saved at {output_file}") # import json # import os # input_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/chem/chem_multiple_choice.json" # output_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/test_chem_multiple_choice.jsonl" # base_image_path = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/Multiple_Choice/" # # Read the input JSON file # with open(input_file, 'r') as infile: # data = json.load(infile) # # Process each entry and write to the new JSONL file # with open(output_file, 'w') as outfile: # for idx, entry in enumerate(data, start=1): # image_path_png = base_image_path + entry["ImagePath"] + ".png" # image_path_jpg = base_image_path + entry["ImagePath"] + ".jpg" # # Check if the .png file exists, otherwise use the .jpg file # if not os.path.exists(image_path_png): # image_path = image_path_jpg # else: # image_path = image_path_png # new_entry = { # "id": str(idx), # "images": [image_path], # "conversations": [ # {"from": "human", "value": "\n" + entry["Question"]}, # {"from": "gpt", "value": entry["Answer (final answer highlighted)"][0]} # ] # } # outfile.write(json.dumps(new_entry, ensure_ascii=False) + "\n") # print(f"Processing complete. The new JSONL file is saved at {output_file}") import json import os import re input_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/chem/chem_free_response.json" output_file = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/test_chem_free_response.jsonl" base_image_path = "/mnt/hwfile/ai4chem/hao/data_processing/SceMQA-main/Free_Response/" # Read the input JSON file with open(input_file, 'r') as infile: data = json.load(infile) # Process each entry and write to the new JSONL file with open(output_file, 'w') as outfile: for idx, entry in enumerate(data, start=1): image_path_png = base_image_path + entry["ImagePath"] + ".png" image_path_jpg = base_image_path + entry["ImagePath"] + ".jpg" # Check if the .png file exists, otherwise use the .jpg file if not os.path.exists(image_path_png): image_path = image_path_jpg else: image_path = image_path_png # Extract the content inside answer{???} from the Answer attribute match = re.search(r'answer\{(.*?)\}', entry["Answer (final answer highlighted)"], re.IGNORECASE) answer_content = match.group(1) if match else "" new_entry = { "id": str(idx), "images": [image_path], "conversations": [ {"from": "human", "value": "\n" + entry["Question"]}, {"from": "gpt", "value": answer_content} ] } outfile.write(json.dumps(new_entry, ensure_ascii=False) + "\n") print(f"Processing complete. The new JSONL file is saved at {output_file}")