diff --git "a/diffusion_course/unit1/01_introduction_to_diffusers.ipynb" "b/diffusion_course/unit1/01_introduction_to_diffusers.ipynb" new file mode 100644--- /dev/null +++ "b/diffusion_course/unit1/01_introduction_to_diffusers.ipynb" @@ -0,0 +1,3539 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "s7iq_p9RCron" + }, + "source": [ + "# Introduction to 🤗 Diffusers\n", + "\n", + "![diffusers_library](https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, you'll train your first diffusion model to **generate images of cute butterflies 🦋.** Along the way, you'll learn about the core components of the 🤗 Diffusers library, which will provide a good foundation for the more advanced applications that we'll cover later in the course.\n", + "\n", + "Let's dive in!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s7iq_p9RCron" + }, + "source": [ + "## What You Will Learn\n", + "\n", + "In this notebook you will:\n", + "\n", + "- See a powerful custom diffusion model pipeline in action (with information on how to make your own version)\n", + "- Create your own mini pipeline by:\n", + " - Recapping the core ideas behind diffusion models\n", + " - Loading in data from the Hub for training\n", + " - Exploring how we add noise to this data with a scheduler\n", + " - Creating and training the UNet model\n", + " - Putting the pieces together into a working pipeline\n", + "- Edit and run a script for initializing longer training runs, that will handle\n", + " - Multi-GPU training via 🤗 Accelerate\n", + " - Experiment logging to track critical stats\n", + " - Uploading the final model to the Hugging Face Hub\n", + "\n", + "❓If you have any questions, please post them on the `#diffusion-models-class` channel on the Hugging Face Discord server. If you haven't signed up yet, you can do so here: https://huggingface.co/join/discord" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "Before diving into the notebook, you should:\n", + "\n", + "* 📖 Read the Unit 1 materials\n", + "* 🤗 Create an account on the Hugging Face Hub. If you haven't done so yet, you can do so here: https://huggingface.co/join" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zfA87mA93LLP" + }, + "source": [ + "## Step 1: Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pCoVNJtLI9KT" + }, + "source": [ + "Run the following cell to install the diffusers library as well as a few other requirements:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Jw6-w4TB_7wg" + }, + "outputs": [], + "source": [ + "%pip install -qq -U diffusers datasets transformers accelerate ftfy pyarrow" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QJfU9oqZDscp" + }, + "source": [ + "Next, head over to https://huggingface.co/settings/tokens and create an access token with write permission if you don't already have one:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oa0RbEt5D9sz" + }, + "source": [ + "![Screenshot from 2022-11-10 12-23-34.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9CDekhLrETH2" + }, + "source": [ + "You can login with this token using the command line (`huggingface-cli login`) or by running the following cell:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 327 + }, + "id": "FlX4eeECD9HO", + "outputId": "6e8d9cb7-d62b-43fb-cc09-35b8abc44b64" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Login successful\n", + "Your token has been saved to /root/.huggingface/token\n" + ] + } + ], + "source": [ + "from huggingface_hub import notebook_login\n", + "\n", + "notebook_login()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then you need to install Git-LFS to upload your model checkpoints:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!sudo apt -qq install git-lfs\n", + "!git config --global credential.helper store" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9bR764bDIaDh" + }, + "source": [ + "Finally, let's import the libraries we'll be using and define a few convenience functions which we'll use later in the notebook:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "VXhqi_hNcpk_" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from matplotlib import pyplot as plt\n", + "from PIL import Image\n", + "\n", + "\n", + "def show_images(x):\n", + " \"\"\"Given a batch of images x, make a grid and convert to PIL\"\"\"\n", + " x = x * 0.5 + 0.5 # Map from (-1, 1) back to (0, 1)\n", + " grid = torchvision.utils.make_grid(x)\n", + " grid_im = grid.detach().cpu().permute(1, 2, 0).clip(0, 1) * 255\n", + " grid_im = Image.fromarray(np.array(grid_im).astype(np.uint8))\n", + " return grid_im\n", + "\n", + "\n", + "def make_grid(images, size=64):\n", + " \"\"\"Given a list of PIL images, stack them together into a line for easy viewing\"\"\"\n", + " output_im = Image.new(\"RGB\", (size * len(images), size))\n", + " for i, im in enumerate(images):\n", + " output_im.paste(im.resize((size, size)), (i * size, 0))\n", + " return output_im\n", + "\n", + "\n", + "# Mac users may need device = 'mps' (untested)\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cir1ABwMI2yI" + }, + "source": [ + "OK, we're all set!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CP_mVwzHbmaa" + }, + "source": [ + "## Dreambooth: A Sneak Peak at What's to Come" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6ttDW4giJCvY" + }, + "source": [ + "If you've looked at AI-related social media at all in the past few months, you've heard about Stable Diffusion. It's a powerful text-conditioned latent diffusion model (don't worry, we'll learn what all that means). But it has a flaw: it doesn't know what you or I look like unless we're famous enough to have our images plastered around the internet. \n", + "\n", + "Dreambooth let's us create our own model variant with some extra knowledge of a specific face, object or style. The Corridor Crew made an excellent video using this to tell stories with consistent characters, which is a great example of what this technique can do:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBBAQDw8QEBAQEBAQEA4QDxAQEA8QEBAQEBAODQ8QEA4PDxANEBAQEA4QDhUQEBERExMTDg0WGBYSGBASExIBBQUFCAcIDwkJDxgVEhUYFRgXFxgXFxcYFRgYFxUVFxYYGBcVFxUXFxUVFRUXFRcVFRUXFRUVFRcXFRUVFRcXFf/AABEIAWgB4AMBIgACEQEDEQH/xAAdAAACAwEBAQEBAAAAAAAAAAAABwUGCAQDAgEJ/8QAWRAAAgECBAMFBQMHBgoGCAcBAQIRAAMEEiExBQZBBxMiUWEIMnGBkUJSoRQjgrHB0fAzYnKSwtMVGENTVKKz0uHxFyQ0dJPUFjU2Y3ODlLIJRGR1haO0Jf/EABwBAAEFAQEBAAAAAAAAAAAAAAACAwQFBgcBCP/EAEkRAAEDAgQCBwQHBAcHBQEAAAEAAgMEEQUSITFBUQYTImFxgaEUkbHwByMygrPB0UJSYuEVMzVyg8LxFiU2U2OSw3OTotLiJP/aAAwDAQACEQMRAD8AxlRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIVy7FeUkx+Pw+EuMyJdNwFkjMMlq5dEZgRqUA1GxNab/xQsH/pWJ+lr/drHXDsc9tg9t2tus5XRirCQQYZSCJBI0OxNaq9hXj1+9exovXrt0Las5RcuO8S7zGdjEx0rCdNP6Sp4XVtLUZGMaLsyg5jmte520I9ymUnVuORzbk8VOL7IOD/ANKxP0tf7lLzsU9n/D4/hwxly/eRyb4yILeX82SB7yk6xrrVd9pvmvFW+L41LeJxFtFa1lRL11VE2bRMKrADUk6DcmtEeyFbJ4GgG5bFgfEuwFZ+vrMYw7CGVclVmMjoSOy0ZQWuc4bWN7jXuTzGxPlyhu11g6tD8+9gmHw/Bv8ACK37zXO4wd3u2FvJOIewrCQuaFF0xr0FVkezTxj/AEZP/qMN/e1o7t+wDWuWXtOIe1huHW3Egw6XsGjCQSDBBEgkGr3HekrDVUcdDUNOaVrXhrmuu0kCx3sD5JmGA5XF44aJN+z97P8Ah+JYL8puX71tu9uW8qC2VhMsHxKTJzUqexzs4v8AE8T3FkhFUZ711gStpJAmBqzEmFQEFj1ADMuuPYh/9Uj/ALzf/VbpUewZzLZtYjF4e4wW5iVsGzmMZjaN7NbBP2mF0MF65G8qgnH8QjOKOYcxhLOrFh2QS4E6DWw11vsnOpYervxvdX/D+yJgMnixGMLxqwNhUnzyGyxA9M5+NZw7euym7wq+qM4u2boZrF0DKWCkB1dJOV0LLMEqQyEHUqr27fOx7ijYx+IYLEPeM5kti4bd+wBHgtAkW3QROUFWO2VzJOYefuOYrEYh7mMe498HK/ejKyZSfALcKLYUk+BVUAk6Cal9EZa2pcJzXNmYW9tmWzmOOwHEAczYHg3iEVIa3s5LHgVA1Yuz3kzEY++uHwyZ3OpJMJbQEBrlxtlRZEnUkkBQzEA12ty+ytwa1w/gzY24Ia6l3FX2gFu6s5+7QRqQEQ3ANTmut6AX3SjG3YVR9bG3M9xDGDm4337gAfHQXF0zTxdY6x24qC5a9kPChB+U4rEPc69wLdpB6DvLd5mA8zlnyG1VTtW9lN7NtruBvNeCAs1i9lW5lAJYpdXLbYx9hkTQGGJhaUHaX2t43HXmuPeuW0J/N2LdxltW1nwgKpAZh1uMMzfAAD8Ha/xD8ju4JsQ72buUEuS11UBlraXSc4t3NAyEkZRlGUM4ajpcJ6SMeyd9W0kkZ2FoygHexAFyO7Lf95POkgIIDfApndins/4fH8OGMuX7yOTfGRBby/myQPeUnWNdazpW8fZCtk8DQDctiwPiXYCs3j2aeMf6Mn/1GG/vaMG6SNbX1sVdO1rWyWjDnNbYXde17X4c0SwdhhYOGqs3PvYJh8Pwb/CK37zXO4wd3u2FvJOIewrCQuaFF0xr0FZ4rd/b9gGtcsvacQ9rDcOtuJBh0vYNGEgkGCCJBINYg5c4PcxF61YtDNcuultB/OchRPkBMk9ACelTOhmLTVlJNNUSZssrwDpYNAaRtpbUm6RVRhjgAOAV85X7Jbt/hWK4iJHcOuRI/lLSA/lL6xpbzIwYGIt3xBIELOv6ecocvWMJhrGBXKVWyyBGyg3VXKL7lOuZ7uZyBE3R94V/Pbtq5LPD8ffw2uRWzWSftWX8Vsz1IByMR9pXHSmOinSz+lamoidpY5o++P7PoRc97iOCVU03Vtaff4qwdm/Y/c4hw/EYnDktfw97L3JiLtvu1c5Dv3oJMAmGGggxmV960VJBBBBIIIggjQgg6gg6RWyvYD/7Fi/+8r/skru9pbsKTHK2MwQUYoAl0UgJiQPX3ReEQG2eIbWGqMzpo2lxiahrDZmYBj/3btBs7uJvY8OOmyjSZog9u/EJTezh2EYfimEuYi7fvW2TEPZC2wkFVt2LgPiUmZukeUAUjRwpmvdzaVrjm4baKolnbNlUADcnyFbS9hKwy8OxCsCrLxC+rKwIZWFjCAgg6gg6EHUGqV7FPKKPi8djXUE2XNmxOuV7hc3XHkwQKgPlcuCm29J5aSfEpJnZmRGPI3Td1wBcC9ibX3sEezhwjA3N7r57PPZJzIr4/EMjsAe5w+QlPRrzB0LDYhEKg7M1SvNvshWCh/JMVdS4JhcSEdGMaAvaS2yCY8WS5H3TS/8Aaj7Z8Texd7CYe69nD4d2tHu2ZGvXEJS4zspDFA8qqTlIUNBJ05Oye7zFhTbv4ezir1m4quLdwPdsXUcZlYKWkSCGDoVbbWCQY4h6QvhbWyVjI3O1bGQA2x1DSTxt3EjiUq8AOQNJ70o+deWb2DxFzDX1C3bRAYAhhqodWDDQhlYMOsHUAyK1Ly37KGEu2LN04rEA3LVq4QBagF0VyB4ZgE1nftC5O4khuYvG4e+veXJuXrqwGuOS2p2EwYAAAiBGgrbHO3BcTiOBpZwhK4h8Nge7Iud0RlbDu/5yRl8Ct11261K6WYxUwxUgp6hrC92V722LBo251vYAknfbcpNNE0l2Zt7DQJfr7IOD/wBKxP8AVtf7lZ27LOyi9xHGXcPaYJbslu9vMJCIGKL4RGZ2jwpKzDGQFJF15h7LeYLFm7fuX7ot2bb3HIxzEhUUsxAFySYGwq0ewbzTZS7i8NcYLexHc3LRY63e770OgJ3Zc+cLJJBuH7JptldiFHhlVVMq21LgG5coaQzXtE23s05teWuiCxjpGtLcv5q52/ZFwGTXEYwvHvBrAWfPJ3JMemf51mvtz7LrvCsQtp2F23cUvZugZc6gwwZJOV1MSJYQVIOuj07cOyDiy425xHBYi5fOc3ERXK37InN3SIT3dy0kBQimWAgodScyc68bxOIv3LmLe49+Sr95oylSQUyQBbCmR3YChdRAqV0RkrahwnNa2aMt7TctnNceHMAczYHg3iPKkNbpksVC1pHsH9nrD8RwNvFXL962zvdUqgt5RkYqPeUnWKzdW8/Y8UnglsDcvigPjnaNal9O8SqaHD2yUz8ji9ovpsQ7mDySaONr32cOCrP+KDg/9KxP9W1/uUs+C9ieDbjOK4XcxF9e7t2nw7jus1wmzav3UYFYzBbhZco92289K9x2L8x/565/9ef7ylBgeYcThMeuIZ2fE4a+MzO5cs1o92yM5JLKVU29z4TG1QcJhr52zBmJNmOQhuUN7D7gtcbX00I14EpUhYLdi2vvU37QPZseF4zuAzPadEuWbjASykZXDQAuZbisIH2ch0zVz9hHZ+eJ41MNmKWwj3LzrBZLaACQDpLOyJ6Z56VqP2p+ApxLhFvHWBmNlFxVs/aOHuKvfKfIoMtxhuO5YRJrx9j7lhMDwy7j7/gN8NeZj9jDWA2UwfvfnLunvKbXkKjjpfKMBMzj/wD0A9Va2vWbXtzy9ra2bRK9mHXW/Z38kqOdOxLB2eKYHhyYi+7YgM19iLc20IbussLGZijkhtlyGPFTL/xQsH/pWJ+lr/dpN9k3ND43mSxin969iXYD7qC2620nqEtqqA9ctaF9p/kniWMbCnh7sgtreF3LiO4ksbeSQGXN7rfD51AxitxOlq6WifWdWXRXe9wbbNdxO4A4ZRtw4pcTI3Nc/LfXQJWdtns4YbAcPxGLt4i+72e5hXFsKe8v2rJmFB0FwkQdwKOxP2ccNj+H4fF3MRfR73eyqC3lHd37tkRmUnUWwdepNLrtb5L4vgrKnHXrhtXXCBTimuqzAd4MyZyIGXMCRuBWluwgP/6Lr3ec3PyXiXdi3mNwv32MyZAnjz5oy5fFMRrT2K1+IUeExvjrBI584b1jQ22UtIy8Ro4XK8iYx0pBbaw2VM5m9kC3kP5NjH7wAwt9FKMegL24ZNftZXj7tKPsg7KrV/iF7h2Pe9hsQgPdhO7IZ08TpLAzmtkXUZfCyKxkystj2RsJxhcZcOKGMXC902cYvvgC8ju+6F7XPMyU0CyG3Wqn7ZfGO441YvWGC3rOHw7ll3F1bt51zDr+b7vQ7qQNjTuHYhiZrZcKfUiQmMuZK0C7HcAbC1uYNzYix1Xj2R5BIG2125qje0X2UnhWItorNcsXkzWrjgBsywt1Gy6SpKtIAGW4m5Bph9lXs42b/D1xuNxFzDhle9ChMqYdRmW45YE+JQbummQp1mntjOF4XmHhuFuN4Va5avGJzW7ltsmJszKt4l7yyGOnit3IOVQV97bXP4sYe3w6yQrXlVrwXTJh0MJbEbd467fctkEQ4qFTdJsSrxBhkZLKgPcJnWGjWbnUWuRv/E22zglOp2MvIfs2081QOwPsIwnFMPfxBvYi2qYu7ZtKBak2lSzcQv4SO8i7DZTl00pif4oWD/0rE/S1/u1kfhPMmIsqVtX71pSSxW3duIpYgAsVVgJIAE7wB5VuTivEbn/owLveP3v+DbL95mbvMxtoS2ec2YnWZmpXSp2MUNRG6KrIZLIGNblHYvzJGq8puqe03bqBdJntd9njDYL8hyX77/lWOsYV84t+FLuaWWFHiEaTpUD7SnYpY4VZsXLV67dN24yEXAgACrmkZQDNUTs+5ixF7H8PW9fvXVGNwjBbl244B75BIDMQDBIn1Na39rns/wAXxCxhkwlsXGt3Xdwblu3ClMoM3GUHXoJqRUYhXYVXUVPWVILXdYZHENaCP2b32toNxdJDGSMc5reVlk/2f+Q7fEsaMNcd7am3cfMmUtKAEDxAiDNT/av2T2cHxXCYBLtx7eI/JczsEzr319rLRAC6BZEjemj7MPYzxHA8RW/ibKpaFq8hYXrL+JgAoyo7Nr5xXF7Sv/tLwz/+P/8A9dypP+0D58bdDTTB0XUOd2S1wzi+txfUaaX8knqQIruGt1UfaT7E7HC7Fi7avXbpu3WtkXAkABC0jKAZqudofY5ew+CwmPtZruHv4excu6eKxcuIpIYAa2mY+F+hIVtcrO9/b9/7Jg/+8P8A7M03OxxEPCcArhSjYLDKweCrBrSLlYNoQ05YO8x1qih6X1tLhFLWyHOXSPa8GwzN7Wmg0IsLH33TxpWOlcwaaCy/mzWi+0nsAw+F4SeIJfvNcFrC3MjC3km+9lGGihoAukjXoK5/ab7BWwRbF4RS2EJm5bElsMT+LWZ0DHVNm6MXV2/f+zDf924d/tsJV3ifSb2h1BLQydiSVrXjS9rtu1172OvDxBtYpmOntnDxqBosf9l3Z5ieI3u5wygwJuXHJW1aU6BnYAkSdAoBZtYBgxp7gPshYQIO/wAVibj9TZFq0nwCul5tNpLCd4ExVo7EsHa4VwFcUVzM2HONukaG41xc9lJMx4DbtDpJZo8RrJfHOe+J8TxIHfXrl2435qxZZkRdyFtWlaBA6mWMSzMdaZfX4pjdTM2imEEERLS+1y4jc67Ab7iwIvfgoMjhaM4uTwTX7VvZVu2Lb3sFeN9UBZrN0Kl0KNWKXBFtyBrlItmAYzGAc01oINzKcFdwL4fF3LV2FL3EZrypJL21uls2R9FYNm8IKjKGIKT5q5axGFuC3ibT2bhUOEuDKxUkgNHkSpHyNaLo5NVBjoquojlcD2Swi5bzcB392nEm6jzht7taR4qJrUP/AOH7/LY//wCFY/8AvesvU7fZQ7TMLw25imxPeRdS0qd2mfVWYmfEI3FK6XUstThM0ULS5xAsBue00/BFM4NkBKgvar/9dY7+na/2FmtRex/dy8EtsN1fFETtIdjr6aVkPt05mtYziOJxNnN3V1kKZxlbw2raGVkxqp606+wPtxwOC4WMLfN7vQcQfBbDL+cLFfFmHnrpWd6S4VVVGBU1PHGXPb1WZo3FmEG/gd0/TyNbM5xPNQf+NzxL/MYH/wAPE/8AmqdvtC8Sa9y1dvOFD3sPw+64UEKGuX8I7BQSzBZYwCzGIknesG1pztH7bcDf4F+QWze/KPyfA2vFbhM1h8O1zx5jpFpoMa6edGNdF4YauikoIALTNLy0bNBBue4IiqCWuD3cNE0fYh/9Uj/vN/8AVbrGPJfKOKxjsuFs3LzIpdsg90AEyWMAEwQonMx0UEwK0F7NPbhgeH4AYfEG93nfXX8FvMuVska5hroelUr2bu3P/BYexettdw1x+8Pd5e9tvlCllDEK6sFUFGZYPiBHiDe0VPiVFU4lUQQZnOcwsDjYOAz3I52B2uL80PdG9sbSdr37tlM9h/tCY6xftYXFZ8Vaa4lmHBOJtlmCeFvfuEE/ydzMxgAMtXr29eVbXcYfGhQt7vhh3YADvEa3cuLm6k2zahT5ORqAsXR/aN4KJui4xuR0w1zvT6ZyoX09+PWs1e0b2ztxV7aIhtYaySbaMQXdzoblzKSoIHhVATlBbxHNpW4XR1VXjMVZFRmma3N1hJsH3GwFm315DXc6gJyRzWxFhdm5dyUNbs9m/GW+I8B/JC0MtrEYK9l3QOHFtwDv+auKQdiyuOhAwnVz7I+0fEcMxHfWDKsAt60093dSZho1DKdVcaqZ3DMrbHpXgsmJ0eSE2kY4PYf4hfTzv77X0UWmlEbrnY6FRnP3J2IwN9rGJtlHUmDByXF6PbeAHQ+Y22IBBA+sFyPi3wtzGrYc4a2VV7sQupKyswXCtCsVBCkrMTWwuBe03wq/bH5Styywgm3dtG8maPsNbDyOksiH0FVftg9qDDGxcw+CtG8biNbZ79sLYVGBVgLLeK4cpIyuqIJE5wCppqfpFjkj2QGgIdcZ3E2Zb9og2ttt2nW5OTroIQCc/hzV29j+7l4JbYbq+KInaQ7HX00pJf43PEv8xgf/AA8T/wCaqc7A+3HA4LhYwt83u9BxB8FsMv5wsV8WYeeulZeqPhHRiKfEK2SvguDJdhcNwS65HovZaghjAx3DVby9oXiTXuWrt5woe9h+H3XCghQ1y/hHYKCWYLLGAWYxEk70pvYU5G7y/dx7jw2Js2Z63nWbjD1t2mA/+cCNq++0fttwN/gX5BbN78o/J8Da8VuEzWHw7XPHmOkWmgxrp51IcA7d+H4HhIwmCN44lLBVGa0FU4i5q90ku2iuzOqkHRVXaqimw3EqfB5qKCFwfLO4DSwbGQwFx7iBl8L8k66SN0oe47D1TO525P4pc4xhsbZfDjDYYLbFtrtwM9q5/wBpJUWigdwSFliB3VljqIqr+3HyH32Ft462s3MKcl2Bq2HdtCdCT3VwyBoAt26TtWe/+n3i/wDptz+pZ/uqcfZn7R+GfAvh+Km7duN3tt2W2rC7ZuD7WUoFYBmtwBsqGZJoPR7GcNlpqtrWP6mzMsYdmcw3ve4AO515m9uR18Ugc3UX115qc9gP/seL/wC8r/skqhdn/bg/DuJY2xfLXME+NxUjdsOxv3JuWx1UnV7Y31ZfFIf79mjtdwHDLWLtXWvMHxJeyy2gS1oKEVmGcZWIEldYpC88cRW9isTdScl2/fuJIg5XuM6yOhgiRV3S9H/a8Tr/AGuI9VII8pItew3aeBCadNljZlOouv6bcvNZZe+sZCmIIvG5biLpKoguEj3iUtos7woB2rNHsRczKL/EcGxAdrn5RaH3grNbuidpE2yBvGc7KYV3s39ttzhtwWr2a5gnaXTdrJJ1uWv1tb2bcQ26ywnHrljFflGHuNbuJda5auLuNTGhEEEGGVgQykqwIJFVtB0GmjjraKR12yCPq3/3S4gHlbQHuOiW+sBLHAbXuEyfan7Nb+Ex1+/kZsNibr3rd0AlVa6xd7TkCEZXZgob3kykEnMAyuw3t8xd04Lh1jApcNu3Ysm53j+G3aVLTXnASFVQMx1iYAkkTP8AZ97VuFuIEx1p7NyId7a97YfaTlk3Un7mW4BHvdKl+Oe01wnD2z+TK95jslqybCkwYzvcVIHSVRyJ2NR6yTE6imZQ1uHGV7BZr8xDL2sHG2m2/aF/4Upoja4vY+wPDiub27uNKnD7NiRnvYhWA693aRy7D4M9sfpVc+eebbuB4EuKshGuWsNgcouBihzth7RkKyMfC5IhhrG+1Yg7WO0C/wASxJxF8gaZbdtZyWrYJIRZ1OpJLHViSdBAGreV/aY4Xbw9i25xGa3ZtI0WZGZEVTBz6iRTOI9F6miw+jhbCZiyQvka3Y3sS2/Kwy3sea9ZUNc95va4sElOafac4hibF7DvawgS9buWnK27wYLcUoxUnEMAYOhII9DSv5M5SxeKZ/yWzdutZXvXNsGUCywM6eM5TkQeNyIUMdK2YvtRcJ//AFH/AIA/36SnYN7QAwDXrN621zC3L1y6jWwou2i518JIV1YAeEsCpkgn3a0OF1VZBSTex4d1ThlIaXaPvcG3ZGrQBpfW/kWJGtLhmffv5Lu7AfaDxqYixhMVmxVu5cSyCQTibZYhAc+90KTLLcBc9HEQbN7evKlkJhsaqhbzXO4uEad4uRnRm82t5CobfKwBkKsX277RvBVm6rsbkbLhnF0+mdlVZO2rx61mP2ie2FuK3beVDaw9nN3VsmWZmjNcuR4cxAACiQgkAnMSavCaKqqsZjrIqQ0zWh3WXNg+4OgFm8eQ7zqAnJXNbEWF2bl3JU1vP2PLkcEtkbh8UR8nY1gytUezn264DAcOt4bEG93iveY5LWZYdyw1zDp6Vf8AT6gnrMObHAwvIkabDkA5M0T2tfdxtoqyPa24l/mcF/4V/wD8zSJ41j2u3bl1oDXHe4wGgDOxcwCSYk6STW3/APGh4T/+o/8AAH+/WUPaA5ps43iWJxNjN3VzuMmZcreCxZtNKyY8SHrtFI6KuLZ3sGHmnBbcuvfMQRZv2RzJ34L2p2HbzLQ3sN85C9hr/DrsN3Wa5aVohrF0xdSPJbjZjMz356Cuv20ObVwmBscOsQnfBQVXTu8LYyqqASCA7qqjcFbV1TvWXuyHnBsBjsPiRMW3AuqPtWW8F1YkAkoSVnQMFPSuztz52PEMffxAJ7stksAzpZTw29DqC2twjoztTD+iV+kArLfVW6wjh1o02/8Anfnde+0/U5eO3l86KR9mD/1xgP8A4rf7O5Wovak7X8TwtsKMOlhxeW8X75bjR3ZthcuS7bj3zMz0rI3YnzFbwnEcLib2bu7TlnyjM0FGXQSJ1I61rpvaj4T54j/wB/v1B6X0E78WhqBSmeNsZBbwJu7jY7XB2S6V7RGW5rG6zB2udtWL4nat2sQmHVbb94pspcUlspTUvduCIPQCtR+z9imTlm26HK6YbiLowiVZb+LZTrI0IB1EVQe3zt64djeG4nDWO+7273OTNaCr4L9m60tmMeFD03iozsx7b8Dh+CDA3De78WMbb8NuUzXrmIdPFmGkXVkxpr5UziVFUV2EwxRURiyztPV79nKSX7DQl1jovWPayQkvvpun92Wc+nifDu/w7JaxORrbhlzLZxIXdkmTbJIuLr7jAHUMKwB2hDEjF4gYwucSLjC+X3L9dvDliMuXw5MuXwxVt9nftObhmLFxszYe6AmJQakqJKuokDPbJJE7qbi6ZpFr9qDnXhfETbxGFN5cUsJcz2sq3bWuUkhj47Z0BjxKYJ8CCrPA8HlwTFZIo4s0EurXgXMZ/cJ3y/8A5PNNzSiWMEnUcOfemH/+H3jXNviNssciPhXVege4uIV2Hqws2wf6ApBe0Li2fi3EC5LEYm6gJ6JbPdIvwVEVR6AVfPZM7VMJwz8t/Ku8/P8A5N3fdpn/AJL8ozT4lj+VWPPXypV9qPGUxGOxd+3Pd3sReuJmENldyyyNYMHaanYZh00fSCrqXRkMc1ga62hNmXt5jXvCRJIDC1t9dVW63fxf/wBlB/8Atdn/AGSVhCtRcQ7ccC3AhgAb35R+Q28P/JjJ3ioqnx5vdkHWKOmFBUVTqTqWF2WZjnW4AcT3L2le1ua54JB9k/8A6wwH/fMJ/trdbb9p7tQxHC7OHuYdLLm7ddGF5bjAALmBXu7tsgz5k1hjkPiS2cXhbzzktYixceBJy27iu0DSTAMCnb7Vna9g+JWMNbw3e5rV13bvLeQQUyiDmMmaY6R4M6vxajL4s8QD8+mguNL+a9glyROsbHSyYfs8dv2M4jjlw161hUQ27rzaS8HlACBL37ixrr4fpVZ9pX/2l4Z//H//AOu5Sn9mvnSxgMeuIxGfuxaup4FzNLgAaSNNPOrH2y9puFxfGcFjbXedxY/JO8zJlf8AM4h7rwuYz4WEaiTpUNnR72TG3PpYcsXUOFwNMxvp4nRK6/NFZx1um37fv/ZMH/3h/wDZmrLxf/2UH/7XZ/2SUmfar7X8HxLD4e3hu9zW7zO3eW8gylCuhzGTNTPEO3HAtwIYAG9+UfkNvD/yYyd4qKp8eb3ZB1iqSDA64YXQRGJ2Zk+Zwtq1uYm57k86ZnWPN9wp32Ye3oXwuA4gwNwju7F+5BF8EZRZvltDcI8Ku2l33W8cG6w/avwypwLFooCqi4RVUbKq4rDqoHoAAK/n7TtvduL4jg2K4fiyz3suH/J7+5uLbxFlzbvHfOqISLh94CG8UF7jFuheTEoK6iFm9bG6Rg2HaF3tHxHDcaaBqOrvGWP5Gx/JaK7MMnFeXUw6sFY4X8jade7vWEFtCwGseG3djco42msfcGfEcI4hae/YIvYZ83dPKhxDKCHAIZDqQ6ypjQmursV7VsRwu8XtRctXI76wxIVwNiGElLgkw4B3IIYaVqnhftL8IvoO/wC8tEf5O9YN0A/zTbFxSPUhT6Cmn0uIYHPUMipzPTzEus09ppdoRoCbW022ANwbhehzJg27rOCk/Z77WMVxRrrPg1sYe2ul4O7B7pYAW0zIqtChmYgnL4AffFZv9tPjK3eLOqme4s2rDEbZxnusP0TdynyKkdKanaf7VVhLRt8Ots1wjKt64gS1bH3ktE53YdA4RQYJDgFTkXGYlnZndizsxZmYkszMZZmY6kkkkk6kmneiHR6SKtfiD4OoaW5WR3JOtruN9eHG2+wtr5UzgsDAb8yn9/0G4X/O3/rb/u6P+g3C/wCdv/W3/d01K7+A8NN24EkKNSzHQIo1ZifID8Yr6CmoaOJhke0AAXO6+fabpDjFRK2KKVxc4gAWGpPkl/yV7M2Gvks9+/asp79wm1qfupNuCepOyj4gVz8xdh3CEJW1isVcI/n4fX4AWhTd5n7XsJhU7jC2lu5d713QM2xZVys7ehOQAREjWkHzx2gm80lVknQIG1npBGafIg1yytxV08x6gZW8APzJX0PguBSQU4FU4vfxJt6AbDlfVTeH7A+HtaW4t/FamCC1nSDG3czVH4r2Y4VLAud5fNxrjBBNvKEXcn83JJkbEU/Ozfs94m2GzPhyik57a3HUXSrQfFbnMvmA0NqRlpcc5cr4pfzZs3PCWG3mZ/iaYFRUjcn3KzFHTHQAG3f/ADSOx/L6AkIWIG5YiPgAAKlezjlCxiMUlm7cZVeVBRkDZzoohlaQTvpU/wAW5GxZBAtwCZMkfTSaheUeAXrGOwjMsBcTYJIPQXFn12qwZJIWG7rGyjy08TSA1l9e9WnmbsisW/5O5eYyogm3sRJ2Qdajcb2VC2oa4L6qftHLl+uSKsfapzG1tQV3zjoSPdJMgEabdauPYz2i28QhsuAGjUfZdeuhH1DZo31pttRJ1YfuoxpmZy1L3lvsqwl3Q3b4b0NuCPT8308qmv8AoNwv+dv/AFt/3dSnNdoYa+Gt+4WkL0HXTy6iNtCNtrzgMWrqGUyCP+Y+VbLAfZ6phZI0Zh6jn5cVyrpvJiOGzNmp5XCN2ltOy4cL22I1Hmll/wBBuF/zuI+tv+7o/wCg3C/52/8AW3/d01KK0H9F0v7g9VhP9qcU/wCcfcP0S54V2A4R803sQIjY2us/+79K7v8AF0wf+exP1tf3VM/lz7f6P9qpiuE9MsUqqPF5oIHlrBksBbS7Gk7jmSvpToBTR1+BwVFSMz3Z7uO5tI8Daw0AASY/xdMH/nsT9bX91X6PZzwf+exP1tf3VNniuOyCdPixhR6aAsx/mqD0kqCDSo5v5oDkhrjEfdVWy/1ZI+epqvoqjFqkZutIHeBr4Cy001Hh8Zt1YJ8/1Xx/i6YP/PYn+ta/uqg+cOw3DWVXLcxDEzubcaR5WxvP4VDYjHWf6P8AStlR9SsV1DGvkhbmZD0zNl+TIQy/okGriEV0bw6SYkcsoChyQUbm2ZGAfFRPDOzDDkM1x76ohAY+CWO4t2wU1cjUk+FAQTMqrRGK5HsLrnu+iyhPoCcgn4wPgKtV7jByqjKVVRC5ZZfMkmS8sZJLZiTqTUZdeTII9Dv+GmlThVTX1cVHNFT20YFEWOz+2d2ua9JXT55f2V4Hkuz966PmhPz8Aj4AmrJ/hEgaqSf/AHfiH0MEfjXDwxbjFydATIUgEjp1kDby3p/2mW32kz7HDf7CiRybY+/c/rKP12/217jkC0RKvcPzWR8Vy/iCfwrtxuMK+8kDzZco/r28yj9ICvzCcShh3YJJgRI0hgT1g6bEbh/jSmyzb5tPJNvp4Bs0K8cqdh+BxFlLq3cUA0gqWtSrKxR1nuhIDKYMCRB0mKlP8XXB/wCexP1tf3VWLkbm7DWbKW2NxDLMxa05Ge4xdo7sPCgtAmNAJ61bMBzPh3IC3kk7AnIx+CvlJ+QrI1WI4kyR2VzstzbTh42VvHh9G5gu0Xtz/mlj/i6YP/PYn62v7qodewrC/wCdxH1t/wB3T/qrJW8+j+R1f1/tJzZertfhfPfbnYLlH0oVUuGGm9jdkzdZmtxt1dt77XPvSrHYRhf87iPrb/u6neT/AGccFedle/iRAtkZWsyc123aO9o7d4PmRV8WvQYd3V1t5szI6EpmJAdSp9zxAiZBGqsFYaqK3VfhcJgd1YDXW0Pf56a7LnGFdKK4VTOukc5l9RYbbX0F9N9OS5D7IPD/APSMZ/Wsf3FfD+yJw4Ak4nGADUkvYAAG5J7iAKs/AuP8ZAVHSyonL32NQWtdh4u8ttcnoVtOx6yZpncKwbImfE3u+ZfGWKLatW4E/m7SiYESHuG5cmYIBCjnLnzRntO8vkLrZebXBSEX2SuHn3b+NI+8WsKv1NjMR5MqspkQfLmx/sf4Ygd3i79s9c4t3QfhlSzl+jVpbDFj4m8I3CH3h63D0P8ANGi6yW6K/mftmtpd7uxbF0AwbrNCE7eBRqy/zswnoCIJehlmebNSOsdzS3xvsk4QZIv4rUwzZ7BAOgGhtIQWOgBJEwM0kT04T2UOHMzJ+UY7MkZvFhiASJALLaZQ0a5Cc0EGIIJcHJHPa4lu6uIEL5lVlYlWInMkEBkaAY94GI0OUH3fiIweGsoIe8652kmC7eO7cc+8QWaBqCfMBTUkPeRY7pGZ4O5Sgv8AsfYGPDicXP8AONmD8xZkfQ1F3/ZPwamGvYsH+lZg+oPc6/rH1jRnJvHvyi2zZcrqQGGoBBEqy5tQGgwD1U6xrXdbsBpBUMB7wBZLik+aljM6+JXEj3Q29SIJshtILpicSuHYeQfRZmt+yngf9Ixf9az/AHNdNv2S8B/pGL/rWP7mtEnAgzkmV95DuB5r5j4iQQQdRFFhatGtheLtCrTPVxmz3FZ+T2ReH/6RjP61j+4rk4r7KvDbaknE4zT+dY/uKf8AzBxMW1JPSq9f4MzupxFxFtnXus3iY/dYmAAJ8WWfKRvVJjOLUeGsBmOpvlaAS55HBoHlyAuLkK3w9lRUOsDfn3JE2PZnwAti5cxGKHeH80oayDl+8xNmPFuAOkeuXiT2d+HllUYjESxgTcw4n3dpsgNoxJg7oV3OjUfh97F4o3mzW7YU27YmAqZjmJBEAlFG+oDXBs7KzI4ZftWUW0Skt9nRc2vvC2qM7kndigBJAzHSs1h1VVvYZJ32LiTbSzeTRzAGl9yblbA0cUbQCLlI3B+yPgGGZcVimB6BrOYHy1swdZA0AOkb1+Yz2UOHCIxGMJOyl8PJjcD8xvGo8/pL34jw0MBcRHVtcrKrWmkjK3v5AwIA8LoyNlQwcoIpnN+LvkHNbJI0LoQzNHunJadri3FOoyMZ8QGQlSLGWuewanVNso2OOgSHxXs64W2wL3sQ9otAuW2tDRsotoyG2xS4zMAZlI1BINTPJns0cPxDlfyjFgCPFNkT4cx07kwQZUrPhKMTOZakOJ8Sv95muB18LZny5VuLq5R5CkOYUSVVtYMFhmtvZJxcqzMZV7qM6DWQugMqBAEIrKoE5QCPCwFRxXTXvfRPuoYrHTVUDi/sz4FXypfxZE3AstZk5QAp/kQADcJWToAupBZQe/iPss4C2PFicUX3Kq1mQJ8u50P2dYlpiYAa38T5lCXg2y22uQNJCq10mIOWL18ZiDrlQSDmFevDuItla/fYjM3gTqPDmluqsUZSFAhVuLP5xmWvZcQkBIYfNEdAw2uEl8d2BYZWZRdvkrJbxWoUaxmbu4+LGBCt6hfPD9ieAKFu/wATMCBNoEklxoptSAMhMkgEK3iABZWNj71xl8g75iB0A26bAxqQScrrJQWwtav8uXWkySC0mJA0GVVA6AISoAgKogRvTIrZ9LvPopv9FscNGD1UT/0CYLIGN7E5iufKHsnKupUEmyoLNpC6aSxgBstI4p2bYRWCi+4JJABYFj5QFsD8Y+FMTifG2Xu0ZQwAZnBgqCJPjGVs+wVEXKxhDKEIz2M8XXuw1p3c6F+7J7tXIPvXWGXLtAV3AMkMw1pXtc4IOY28lHdRRC4y2Sdbstw4y+O+ZAzOChUEyR7ttvDljXNoQ8wNpflrso4ex/P3sSEj3rbWTlIBOoNozMHQHMPIxVyJlcxTXXWEbQ6a5UMEjch1mdYiagsbxrui7sUDEwxQHLBgfnUt+AFh4VBB33UgUSzzyNLWvIvy38tE17NCBq1Tr+zbgIW6uKxF3DuYW4htAqZ0VwbRjynTXQhZE2bh3sm8NcAjE4z+tY/uKgeyntEt27hRsjYe6Mt62qhV9LihVXVdZhRIk7wQ9bOJXDtayOWtXgTbJ1iMpjP1BDaTroZmJr3B8YfHOKCtuXuv1b7WDwBch1tA9oB4AOGosdFSYjRvYOsiPZ+CV1cHOXFjawxVdDecqx65EGaPgzHX+iKkbSEkACSSAANyToAPjUZ27YK3Zs2LefNflmuKCCBMaD4bE9fwrovTKqEdF1QOriNOYGp/Jcp+i3D3T4t15bdsbXG/AOIsPPdIPi9+5duBEMTOvoNyT5D91aJ9jfslR7z42+DcXDsLdgPqvfxme5GxNsFQu4DNO60puzvh6m+7nZUZj/RRWusPn3YHzranYbbTD8JwruwVXt/lDs2n8uxvCfWHCgegFYGkILg3gBc/zXfMRlcyI23JDR56n9PNXviGLCjUgerMFH7T9BVJ5nS3c1OUnzCXG/1swn6VUecO222rFcLh3vsNDcjKPlCtcPzyV5cK5wu37Qe4jWnkgqSx22YTqAfI+VSnTiV+hUGloZIgHOFvPX3KP41w1NdB/UcUq+dOEKGDKBKkEQdZBnYirp2jcfvoi/k65mZjmJGbKANNJ6+Z8vWlxxTmrGkRcwyuPRWB/Ww/CnHOBFipga4apa84Ws8giYJ06/EetV3s+sMuNt5fMkn+aNTPrpHrIq48fvLcmFKON0bRh6jYkfxFQXKDZTduHf3AfIaFv2fSm2Hq2Fp2UaaHO7MFYe0vjMlQDrP6p/XrVp7H8fmS4s7ZWA+Mg/qFKDG3jeNxhJg6D0X94k1N8l8We0wKTO20gg7gjqKtMMqPZpmynYb+B0WY6RYYcQopKZpAJtYnmCCPfa3mtAUVWsPzTHdi4oVnKqANTqYBI6D5zVlroVJXQ1TS6I3tvwXAMVwWqwx4ZUttcXGoII8lL8ufb/R/tV1cZ4olpczddANJMCTqdAANSx0A+h5eXPt/o/2qXfa9x7u75J1Fu2mRTsXYlwSOo0DEbHulB3rg/SqkFT0knY7bsE/+2xfTn0eTGLovTOG/1n4si6efebgADdcWwRKW1EuV6HIfdU7h7urakKtKviPO1snTMB8VJ/YKo/H+KvddmZiSxJJJkknqTUNcar+CiAA+CnzVRGqZFnmFW2usPiDH+q8f6teN/XVcpb71tsjH+kpChvmCfWqZy7wF77HJssZm10J2AjcmCemgPpNntclYoe7DfEEfvpExhhdlLwDyKjsq77jz3Xm2NdTqCPqPwoHFD1mpXD8m4/pYZ/6Lr+pyv4V14fkPHsYGCvE/G2B9S2X8aiGppv32f9zf1Uj2pvNQ9nGT1/A113eIogA0LGN9SSegUfSNTTE5R7BMddIN4LhU6ie+u/ABYw4kdTdMaeE6inxyD2T4bCDwIA/2rrRcvvtOa6RCAx7lsBPSZNZ/EulGH0Y0cHu5NP56+gKPaHO+wLrHWMxl1SAbT28xhTcRrakn+kBIG502qUtKLI8BUt9qAMp/on3h6T+G1bH5y5aw96y1i7aV7b7/AHwRs6Pqyup1VhsehEisZc5cIfCYi7h3OY22GV4gXLTgPbeNpKkZgJCuHWTlqXgWPx4m0ta3K4a2ve45+XEd48kB7g6zt10Yfj2b4+RrttcSHUSKpeIWTIrswl8+f1rQmEWuErOU2OTucXsRJNywIzIdWtjzt9YH3NjsACZphKKz/hMSRr6H4furQNarodCxjp3NFicl++2dck+lR5cKUE7db/413YRAqh2AaSRbQyAxWMz3CCG7tZACqQbjEgFQjmvfAcDxeMbKMTfS2p8S2zbsYa2NPD3dq2CxjUKxdzIlgDmHXyjwM4m5btzCpbY3GG4QXrj5VmfETdABOihs2sBTcecOf8HgE7oQ9xAYw9oglepN59RbmcxLk3GksFczTWOV7GvLMueW53+zGLkCw2uQLnmTc3FgoHRjDJ3ASMcWR2btbNIbAuJduGgmwsdANLG5PZyZyNhcCCyLmvNo1+4A19ydcikABQY9y2ACFlpILVYr9jNlzRCsHy7ywI7uTscreP8Aprbg6axXJpumyuIxRVbtxTcKjwphrTDOtoSSZVIa7cYyz5tkS2iV887K+LFuStrDYe7jMSxnRsqLasx1NtL2YgTN1V2ZDWTyvc466jj+i3hF1w9v3NfcWO5Uw91Zf0tTkA/+a3h9US6PKkJw58xQjVgTIGuaII0Hn7vxim9yEHxuNuXX0zCSN+7Q+FVHTS2rJtqzEkeI0+rFsKIGgH8fEn1Opq6o2BjLJMrQ0DmVlvku6VAYHxC8Cp65h3ZWPM5htVl4pfvXxnNu4W7u3bgW38IUZTPh0BOdtfvU+l4emfvMi95GXPAzRMxm33rrFSMgvdIz9yWHY+DnxIIIEWYkEaKboB1jeSfnTENnUHqNj6eR9D5fA7ioLi2L7i5caNCtpo/mm6iXI9fExHrFSlvia993WmqKynzJzEr/AFQGH6XpUWUHNdOZV03LAJBHvp19CJKt/NYfQwRqK4OJoFM9GE/PqP4869OOkoVur08Dj7ymSJ+DSAehf4ioHtB40q2wwOhBI+cSI85Go8yak0ry1w5KPUwhzFV+K3xexNu1lzrJNwdAigmW9M0COsx1r342me6Ga0pCHJbOaWYzC5VUwurfb89jOhgn/JbZZhmv3MrOPU6JbH9GT88x6gVGcV4ucpYxLBUAEZQpDl4AI1IRtNJzLqBqOe1NS3E651af6tgyRa7i5zSW2GbQN5tAJ0stZhFG6ni7z82XjzrzEbYW1YyflDgi3JY20gZnvPlB8FtfHqAGyjroOLkhsPhFOIuPnd/5TF3zL3GEBhbEgIoJyQsNMLL5FATHMfP1sYu6jNla46WMwkMllHm6QY0a7cVmnbwWmC+OKp/a3zbiMReDKLtvDImSyiZxbAAKKRlOVsseEzqVLAjNVtFBI5w1tfj3fPDx4CynSFrWmwvbdaqxvbFw5lJjORoA+TvHOhOS3cPe5QDmnwiNppecV5vs4tm7q2jxIMqtu6vwKgXddBmW4RoIG+XLHdm4FABVVYrbU65VzMxJgAEjNq0CT5dLJhbT2AFLGSC1sj3kZTETM5WhhvIOVhsZlVFED+0fRMU8padQnva4s9tSWctbWJzGXtqZg5/de0Ng3vDZsxBYRNrmcrdzqZ/lB4TMZgW0AMqFYAAajKd4ilv/AIQuuMxJLQATvmBGs6bmYkRIgnzq68o8puyzEajcGNA0adfn1IqC6LK2wVpDG+ThopPH3zcIeJjX0YgDLPSC05piVLakxU7wm01zJI8KA7zJLnM5J08TMoPoMoGigCz8ucsKEh9TuNNPhUqnDAkhRv8AECgRkDVTmRsab8lFYPBADXoIG22npXQloawP2+mv8Guu4ka/h+H8fCv17Pl6Uktun84VK5y5dDroIO86a6aDSDAI66xtvqteS+JXBfFm7cVbSEnxa20Xdu7SVUOxjxqGYk+5caCNAYqyCBoD8twdf20qO0vklC+aWQbwsw0E6npOs6+kRUiMDZyg1cfWNzDcKQu8NtmburgjQ3LaqxETBa4SwgeKRuJmPdqh8xLYzlkLoQHYsjRGVS0fZ96Mg0ytI1IM1z4jBYZEJv4i7lAjIhOQmZXNlZ3YSZVAO6mWKjY8WG49hQJH5RcAzCMilAoAj3ske8W8IHunTeJEdPbVtyqeSbg6wUbwXCoXVrNwEyCMsJrvpBIRgYIIywdgOj47M+YnULh8T4rN14AYEPbY5oe2zSQwIAZSSSzAqZzB0OqWGuZ7BCt1UsCrDSVPiLqfImTMa7imVb4q72VIJYsBmBjx5QBDbZb1vbOupkEZQ+UV+KUbZ22dfTUHYtPAg8CDsQiJrXNINvyVlx/HDh1zqJue7bG/iM6x6CfrSv5vvOGZrxJuNrqZOutNLF2cwIBKnowiQfMSDSt7QOXblsG4WzqZltS0wTqDO4B1np0radLsNqXVHtJF47AX/d4Wt3nj3rAfRbjeHikFBfLMS42I+3xuDto0WsddFB8O4x3du8Zgm06j4scgHzzVsvm/FLbwmERoK28PYCqfcBFtVzFdiY8ImQBMb1/PvDXGe9aDaL31oR0Euo1+tf05PLYz4a4ylhaVTliYZbcIY/mt4h5MFPSqBlOWac9+5dGqapgkDiNr27zZIrjRe1kN1Wsi5Pdi4ptloiYVoI3A1A3HnUrgLTMsidKrXtE8h3sXxRcRkxMLbQWSiE28oEPbYlSqnPnYglZVx8Q8+S+CHC8OtJeA70opuzBIYj3SwkHIISQSCQSN6s5qNkbWvY+9xcjy9NdNeSg02NSSudHJFY3sN7HU899NdDxtoknxm4QY/D9gG5quc24kYZraX7lqzcugG3ZuMxulSSA5t2rdwopIIGfKSQQASCAy8NcVb4uQDlJj0J0n4jWlD24dnjY3HPiVzaraCsty2sBEVcpW4ZBDKWBUAQ2smYepqaJ2sh8r2ScQxCpZ2YWHxtm18OXNR3M+HD+F1EwHQggyp917bjcHUee4YDUUusThwpZdgTM7CSIP7Pxpuf4BZbFlH1e33pJME/nGzFZXwmdGaNM21LznHhujD41EqYmB5a03bfQqdSSvmga+VuV9tQqrw7hly08rBB3B/WDUu/MvdyAEVupEFvw1pULjHAgOwHkGYD6TFSPB7gO+9LfG5ovdVMcjJHWsnh2U4e3eY3nfNdU6Id18mjr6RoPjTNrNOAxTKV7s+P7JGhB+P8CtIYJiUUkySqyRsTA1HxrZ9G6ljojE1ti3c87/AJrjX0jYbLFUtqXyZg+4DT+xa2g4W1vwN+e6neXPt/o/2qUHtO8KdWtXwCbbL3b+SuJKk/01MD1Q+Ypv8ufb/R/tVIcSwKXEa3cVXRhDKwkEeoP19DBG1cf6WVvsnSSaW1x2AR3GNn+q7V9HUHXdF6dnH6y3/uyLC2IrkNosYEkkwANSSdgBuSdorSHMPs+WnebOIa0mpyPb77L6K/eW2y/0sx9TXby72DYO0M183cURqUU9yp/oqjZ58pu1aM6S0FhZ+ptpY6ePDTjqrCbCKp1xl08R+t/RXjsq7CblmxbS4FQwGusTmZrjAFoVei6IMxUwokSTTJw3ZlZX7TH5KP2GlPx3tHbDFDhsTesBp/MY7vbqNGkKMWBi1ynQ5L+UeVHJfbg97GWVx17B4axYF28XtZ1F+5kOHS0e8uvlXLfe7G5NpdR15zjOA4zI984ma5ti7sg5jubBtjubAWJAumhFkboNB6eKdnDuV8Os6ZiI94+euwyj6ip7D2ABCqAPJRA/DSkH229ploi3d4ZjW773L3cIt+29kZnBctau2ke2zEqQVbLcujXTLTuK8scYuYZsVew2IxlvwEIbi4h3zFQGtYVHuZVE5iFRYEsVgE1BwzoTVYgwSTSlt/2S0lwPHQ5Rbkb7I6xjRckAfPBajvcTtAwbtoN5G4gP0LTX040kajzGo+u1JPs89nK7i7Nq9jLpwq3FzHCpYUX7YPuh7l0lEbLBKmxKzlMFTTa4J7PnDLCxat37baTct4vFW7hI65rV1APgAB6VeO+i+4u2ex/ibe/uOnqmZMQiZ9kl3lb4n8ly8Yasq+1NYjFYd/vYbKf/AJd+8f1XQPkK1PzVwIYdcoxN3ESxEXu7draxt3qIjnUf5Y3LhzbwNMv+08hJwjdIxFsnyM2HUfMFj+ia9wHDX4digp5HNJsR2TcbE9xB02ISGzCQhwSzWwu5NfFpPKotrhmuqziDtFdJyHcJ4rpbEFQT6GR51p6st4i2SD8D+qtS/wAfx+r5itf0Xt9b93/MuS/Sfr7N/i/+NVLtPvd2MOyyGYYgMVJUlQbICkjUqDmMfzjS+XGFitsBVVmVSoGhDEAg9IiZECRI1pq808sNiu7S2T3i58ihS2bPkzAhdQPCpzbLrO8jg5j7JrmBwtvEYh1N58Rbt93bM27SFLzktcIBdybaDwhVXUAvIaqjGIupq3F9ruNxrr7txbvHgrjorWxT4dGyO/ZGV2h38djffQ6X1srFf7RL1zBYjD3WNx7rqouGM3cXM7X0YQAV8ItjT3b5XQIKrOGxrZbusm/kFxiSWYd6t5gTvLFAWJO4bzqHvXQoJO3X9wHr7vz9KtXZVwA43EW1Ii3Ie4Nz3Y7wR8XB+ESN4qpjZyWkLRdPTsJ4B3WGF1h48Qc/qLe1sfpD85+mB0phAVGXOPYZCEN+wpA0Q3bakAQPdLTA0H0rutY1CCwdCoElgwIA3mQTVi0ZRYKA+7jde4FfQFcP+ER5H3C2WPGMoRnBE6kC4vhEn3t9BXzj+P2Lfv3rSnyLrmPwUEsfkKUgMKiO0bDfm846eBv6JZHH0dF+RNUzD3TKmTICgHqMghI+AH4CmR+XW7yMuW7kYESbN0Ag9VlJI+XSl7iMEbbFW84B+hEzEGIMEDr8A0/e6kxjRW/D8Y75DbKwzI0GdC6jMsCNJInfQiNZmqVYAuXrKtqoZ7gHqokfRob61JWLsa7Eaj0I1B+tRfCsWHxZddAqXHuDorHKv0bf5E+Yqk6QyGLDJy02ORwB7yLfnopEEd5GjvCrVzi7XbjtchclxlVIbRhoJlVBM6HLmj7LGDHHzJiQyAjfxx8RbygiOviH6q7MdZzFkRNBP5xveMAjKB4fEEYgwARmGbMrjPSufOKBLaxEozTB3MqxMa/dA116bVQmNrbRjYAAAchotgzRtws5doT97iQw91lRgw+7rJB8t4naQNNhaeBtaf3lmdpEwIjWd9v1V9cvcMW/YFhR+eOIYA7AWe7UiTuAuUknooY61oDsv7LrHdKGUt5t7ub1jUgeQ1geZJm4mkzgRjcJFPAG3kJ0O6VvCuVQ4/NJB3B+EbHWIj+DXSOz9pBYElAQCRP753J9JHlWksNyetsQqCPLT9elfHFODyJKgCPn5dN6aEMjQbkp8Phc4WsklwPgFu2PdEkz100+evX5fCr/AMv2NIHh/b+3+DUi3L43MH5DXr8f4671+4O3lI8ukiP2+nX615YtOqmZ2kWapKzhoA0+Zr6dRX4MYB/Hl+On8GvDGY0RqQB6zHT8Z/Z8lEXF03crmuKNon/npoPjXz+T/TX9kf8AHfrXRhlk+Yjp8/1iepOmsdPzGPl8vT+PPb/nTXeUrNrovMtJA6fx9etePMvDVuJsPCAR8tR5abTqPjvP3hL43P8Ax/XrX2l+ZA9d/wBo2IpYcPem3A30SP5l4e1tnyHKtzRlzG3ngSyi4CPFMHuvcMqqhiSiL/GcuYdlFxFZZYqQ5RSjaeFlFnJB6FCpIAmDpTa54VGLq3hADMDE+EGXOXrk96dN+p91Z8X4nbTNAMtKureIMAdASN1I1BXUGGE+KXYHu1AVTUsbfVUrmPgd20wBXIT4reUFFcDQgsYOYToSSDOgAq38g8SN62QD4iDKzHjUEo8fakZrRGk5xMwKieJ8xB7YRpKggrm8RBUaR028J6Mu4ERVe5G4mbWItxqM5VvIq2n02YD038pr2GWI3GoUFrhHILbFaerm5qsIcNeLaLaTM7HrdukW7FoeZglz5SfKupHUasYUatpOg1Og1Pwqo8wcaOJu4WyilMKL5OUkF7jqO8u3rxGhcqMsDRASorWdMqwhjKZv7XaPgNh79fILlP0VYQ180le79jst8SNT7tB4nkqPheRWMOBqcSAD698gH0BWv6Qn8KzFybwxWwwYkSMbZY+ma4lz9S1ojmbFZLbGshS1Fg4/PFdXxCIvexo4k/kuO3fsd8qhVLsTBOpEAsTrMbVWO0/m2zBtrcBZSQwB2I0I+IOhpd4jtCwdlrly9dZmAZfzb5MuYFTDKc5YAn3YAMams3cQ7Tlz3sqXHEsUdmGZhOhuaAAmQSQNzsK8iqs12MAPPh+Vlbw4VG1/WSvIygWvrc6377AdwT6tcVhp3BNTvfIwnSstcs9rTq4N22rqDsrMseuuYGPlTK5f7UcNduBAWtFiAoeMpJ6B1JAn1iprZCBqm5Y4y7sk+OyvHMLCDFKPnxcqXH+6rN9ATTQx7TSw7aLoTC3PN4tr65jLf6gY0fachxyMNuSRnM1qAD5wR8CJqLwR1qU5l4irhAuyqoJiNQoBjrpUPht6ltHZsqKolDqgOb3K2cOQEVoTs1xhfC253WU+SmB+EUjuSODB7ltW2Z0DecMwGnXr8t60dgsKqKEQBVUQANhV70Ygf1j5L6Wt4nf0/Nc5+k2ui6iKmI7ZOYHkACPW/op3lz7f6P8AaqYqH5c+3+j/AGqmK490+/t2o+5+GxdW+jD/AIbpv8T8WRFemEw5dgqiSdAPx+gGpPQA15GqDzR2u/keIQWUF7Ifz4zZZVlIyo8MBcEhwYI0AOjEVmqSgnqyWwi5A46Du171sq2rbTxlx34d5WgOF8Ky2jadjcRjLWzrbnyyncdYbQkA5QQI805dww2w1j/wbf7VpSYb2g7BUMRdtyJi5ZYmNT/kGvL0nf6V44r2hbAEqty5OwS1l/272qqJujmOTO7YdpoNTYDkOAHgsg6pje4ududTom1xTlXC3RD2E2iUHdmNt7ZWfnNcxV8PGS0zqBAuW1RmgD7aApeDH/3K3QTJi3IQJa77QNxtUw65dYL3dfLVEtkR8LlRV7t64hJhcGBrA7i+T8ycZqfUAfAVLpuiGMC2bLYbXedPDLcg+nMFIdLHbQeg/NPM9pBA1N1fS5bxdo/1btpG/CvNedbtzRVvXJ6C3iHX5uy9yv6TAUpeDe0Xil/lsPYuide6a7hyB5gO2JDH08IPmKa/Z/2qYTHEIjNbvwT3F6FuMBJJtsrNbugAEkIxZRqyrXuIYfidDGXvje5o3IlL2jvLbXA5kgDvSAWOPAeQXxxAXSs3FyaeFSylh8QhNtY6BWeZ3WIKc7ZeANiMK6oJuI4u2x5sgZWX4sjMAPvZKenNt5VVmZgqopZ2YwqqolmYnQADUmss88doZxBe2ge3Y6eAl7us5nYBignQWgV09/NMLP6L01RUyNmiAGWxJ4Du778r+JCbmsDa6UzsDB+vp6GvS2fWpziNsHUn66EfI1D27Y+VdYa5Ka+66MOkzr0P6q1xy3xizZN1sRbNyy1phdCrmZFDLdNwKCHIthDcPd/nBlzICygHIpwjD3NSdFXcknQADrJ0jc1qZW1PzHyIII+BBI+daXAqcVEU8d9CGjvH2vzXM+n1WaWoo5gPsmQ25j6u48xorW93BYcd8OM3BhiSVw9hsLnbcd2Gw9gYtlWYgRdX7VwQTSr7ae1L8rCW7am3h7bq9tGbNduuuguXWloABYBczSWLMzEgJx3uRrpcLaysCYUEkN5wfCVgCSXJAgEmBNLRbKqSAQ0Eifs6HcefoxJB3jY1QPoJIJLT3zeWvfp8d1pKGtpquLrKZ127bWt3W5qwnEBrVsmTlcq3TNlXr5SCpJ6S0SQBWk/Zh4Cj4R77qr962SGUFcqAZtGBEG5mPpEepy1gYLpbJIBdMx8iSFI+QYgn7w10rXPsxYXJhL6xlK4y+hWWIGUW9s2sQQoMLIVSRMkvNZZSXuOUkKU5q4Jiriun5i3bOQWktWRiJEnvO9F60LKjLGVSjeLMO8TQiu8H7Knt93cJVbwJOa0RbZTmJUqttFt5QsSGLQQNWmKcoFftPF125bDx4+9MRvc12YHy4Kv3uElsOqlh3iie8TMv5xpFxgfeGYs0sdJIYjTSAwfZ4BLJFtzm1mWVjMEOVcmT4iSSddCIIa/2LYAAGgAAHwr1UUmwvdOiV1iFVOXuD303unMDrnDOrADUlsqnOTGgbIBJyzGX17R8OO5LfaBTYamCQNzpGdj139atKionnLDhrLAmNU+ZLqAD8z5ivXG+qIxawSg4txMqhk9POu7ljhvdWMzGLmJys381IlU+SsSR95mGm4jO160qIoAIm2THUCWAn18J/iKnedGKrZ+ySQvUAEgbxBhYkxBAB2rD9L53Gakpf2ZHuLhzyAEDwuQT4BXOGRgyEnguTjGK8BFvKlvUNdOkwdgY0AJM5QSCCYlWAR3aqlu1byq5uu5YqAJZgeoUaQYIBGjCSsAQs7zfiWxlwBWK2LZUW1gajWDHu6LaJY7h30A8JHRyRwhXe7caSUtGJM7sFOpJkqdJ6szTsRSHPGcDcj4LSRROy66ApX9nfC7lu4LcRevnxqN7aMRCT5wJMfeA851xy3w9kQKGCwBGmaNOg0n46fOl52UcsjvmvlQWbYnoNhHy8qdC4TwyGVfWJj8VqypB1hMtt01WSNiAjC5b+BuFdLgY/wA4FB5aQG/VVSxnCMUzfZUTJLHSB5EL5H+btudYsXFcNeyQuKRTO7WSQfpdkHz33O1RvDcBiVI7zFWboPTunX9dxp+cfrNTJGZiBY+8frdR4H5Gk5m/9rv/AK2VfucIvT4XWDMjc/1ifnt16Rry2sBfBIi36SxB89u7YAdN6umKwRjW4gnQFbZG3lLnT4GuHFYO3aUy+p947fHUk+X76ZdAB/qpkVTfT8v9FW7eGuT4gug+ydPLoFP4V93rXoPPoYO86/CPlXlc4kkxmYz0EDy8gOletl1Okn4DX6mB+z4VELuSmkHkvXCJIJ/Hy6b6CPT/AIVFcQuLnAzDrtt1+X8fKuvH2xBgQNtfr9fjUHdGXX9Wp/4/HekvJtZDQL3XWmL1jf5H8f460Ld67eg8tRrvpuPptNcLYs7D46jaT1/dFe+EEhm810B20zAH5zB12Vfn4w6pThpsl9zowZixOn5wbGCuUMdfMA3BO3u+ZNI3HYqCyjKZ2LFtIkxowUExAYqdxqDqHf2lOFR/NlBX4+6fTWdesT51nsWiXOp0On18oJP8HUiDYUbb3VBiGhsFy424wOvp8QSJg+uvSPXyrm4djMr+WYhW9QHW4D6eJQ0DqtS1/DOBmKSDsxRtI+9mWGUk+oPXpUPdwrTrHn0BPwAiY8lBgdAKtGEWVS4EFa3YVA8zXksWrK20uE2hcVCfES15gzBQoLkmMqjeCdJNT9dmE5hfDq7IisYJkKGuaDZMxyj6amtl0pw72mmztaS5u1uR3+QuL/R1jvsFf1Mjmtjk3zGwuActjsCb21XnYxNzDYMLdBS7dcXMhjMggd2GA2YhWaNwInemHzn2n273DrzA5L4ssMp2Nxlygo2xBJnoR186yhxfm3EYm+mIuTbsK7IgYk53cZWJY63H2LN7qhQBHWz3sSXAtgx3mVfTUiuVPzQEAbEa+vwX0rFTMnGZ+7Tf4emnol1wLlC7fts8liJyoDBaN/EQQPoahxi79nOgwiqHGVs9u5dJHlnzZfXwxrHlWqOWeRhYAtqQ3XMCrGYk+78dwKq/P3CMYjZrfduh6RbZhG5IPij4TVnFVxNHa48uCYkzPJGo8LH+fqs58K4beuMFXCZ5+6Lqf6zMVHzBqwc38iPYRLmomM6khshO3jAAPltvTY4DzG1sHvgFj7iAT9Kq/ajztau2jbUGZBkxqB+qpZka8Xaowu05Rc+IH6X9SrNa7RMOli0bjFrndrmVRJzAAHUwup13pK9o/Nb4q5mIyosi2nkDuSerGNT6ADaoa/iJqOx93T40uMElJqixkZK48PB0+lS3CeHQcx2FQarUjwwHbWOo6VLkCz1OddR5rQvZLwKxkW+rLdubSDItnqI3DR1OvlTApNdgRAvXRtmtjTzykax5gE05a3WClhpW5G25955+a4P02jmZijxK8u2IvwadQBwsNRp47qX5c+3+j/aqYqH5c+3+j/aqYrgPT7+3aj7n4bF9HfRh/wAN03+J+LIiqHzV2WYa8SyTh3OpNqMjEyZa0fDqTJNs22J3Jq+UVlqarlp3ZonEH53Gx81uJqeOYZZBdIrmHssxaq3d91eGQgZWNpySMulu5KDQ/wCeP7ai7vZtjrYtF8GR3iygOKwUtAUnw9/mBhgYImPODTe7VcUVwzQWUHRyjFXyahspBGslZ1EifgePlv2gb2Gs9xiLGGxCqqW5u58GzJbUIouTZv2XIiZRUXXRR16JgFXLVRF85HIWB9bG3oPFYvGKZkD8sI8bn4cfXySvwPIuO0Q2LaaEy+IBG4/zSXJIzbCY0mJE92F7NMU5YPesW4Cn82j3dGzR77WvundR6SNavq+0DhspH+DsFuxzf4R8QzMSIb8izDKDlGugAAgaV8/4xSG2qDA4EhMhzHFvcMqQSSEwq+9HiAIDAkGQTN8I2b39FSEzH5CrfDuxm84gX75uNJULatMCo0z5e7kod80gAETrpVR515RxOCuIl7MGI7y1dVTadXtlCYKsy57Ze263LTESwOhFMbmL2luI3DKGzZEFVNnCXXcZ8u13FObBMqIJtx5g0o+Y+O3r73Lt17j3GAz3Lr95cbeFEfm7aqToqSokwomkENA09RZLjY+93HTlurT2k9qN/HWrVtvAqovfRA7/ABNv3rjAaC2GXPbtbBvGZIti2n+K4lg7EMwBYCAxA1UN0PrViwNhjkRQWdioVRqWYzIE6bAkkmAASSACar/NXDjavNaLBigTMQIBZraMcs65VBCgmCYmBMUzQ08FOBDEABqbDx1Pv/QaBOEkleFm9O7H67/OpPBp5a1D21rrwpPTT1qc9t9lJBsrryvzKMJftXsofJmDr1yspVip2DgHT4ZTEk1oNRWZuH8HV2tKzEK9xLbMACRnYKSoJE5QSZPUda00prR9FmMDpSN7MB8AX2+JXKvpNcSKUf8Aq/8Aj/RUntB5xe1nsIMneLle4QQXtsAWt22IHgaYuFD4oCSF7xLi6wVjMQo1nQAanQEnQeQBJ8gCdhT8a1IiSPp+ogr9RUzw7gaLguIYkgSMPfsWyQBD3bZRiCAJJ7xEB/nXB6BGM0PUh1S9+5GluJ0ABvw8NkdF8eZII6GKG1gbuze9xGXcnhfc2vZZoxqeJ/Uv+JP7a2n2D8SW4l9lP8qbGKiIym/YRLi5tmK3LLq0bGQSWzGsaKJM/E/UyKZvYJzZ+SYoO5JtFHt3AAWIV/GuRZADG6gBk5QHduhNU99AtxkvcfOi2TXBzJaY2boWZKEabwdGjqDlmCNQa67uIUKWkZVBYkERCgk67dDSK5w59uYhM7XTg8I+cWVVC+IxIAKlsisgCa65riJJABuESPTyTUbdb8AmYnOTNlQC0LxIBQ3J3JAIEA6xIB/YYtvDrZCKJnTf8RB6gDQE6kATJ1rN+EscOjXEXG9B3inbqDgCoI8gzD1q1cm8xugZsPde8ltGa5h78hgnhU3LbKSrKsKT7rKJ8EMSPA1w3T7sjtG6J4CovmK8B3akwHuAGInKFZ59AGVSW2HXSQZDDXwyhgfCyhgfQiQfLalhzvxnvbkAnIvhUaj+mxBggknJHkvrXt14xuqqPa1iu9Nx02Ai36KghT84nXzrm7eONZe5UHU2cTdBXZjkCIB8WcOCPuiNSKk+K2JQgjcb0uu2zCO2Awl22rlrOfD3FVSWAXLcQkbhYtBj0hxWO6TU96uknOzXPb5vZpr4tt4lW+FuAeQvHkRQpSIbMXWdSJOaSTpEuynp7zEdYuPLXB3td4mwuWfAY88RbUrp5SNuhB86TXIvOHdW7TughyUEffUIWO+h8QO0NIEjMSNB47iSvhbd6yQ5J0OxBa5aLTsV0AMaaAbEaQWwubKS7v8AO+n5/BaZ0mgt3fqr3yvwBbSATJgb6GpHialV2ny23kR/x+FKfjPOlyy2hW4IGgMEH6nw7+IT09TVcHa3cLvntlI0QFlaQeuZfDrpAOvn0i+ZMyNuUBVxp5ZH5iU7OOYy2JUqraayF1Y7KOp8zOnr5RXAL9lELAmQ7gLM5YgwADCiGmOgIiNBSkwvMpxTrbfNbLusGdYUyTJ8422Hl0qd4njmwzXmSMjhS20h1BUtGubMpCsNI7se90bFTmOYjZShRZW5Ln9eCuGK4whfMyktplEtHmNJA32zdT9avxbA377aZVXoqmD89AT/AM6XXF+0wqSFUtm3Og6Ee6NInbX91Ve/2qYhScpkawCw6+ZIzCPQn49KSZM+hUjSHVo/O3gn5wnlbu/eKFjr4m1+kAft2qQGBc/at5fJW2+URpWerPaJiLvvqq+Xjn5kgSfr+6pHDc1XTJ70DyEmIjrHQU2S0aWQC92pPom9xrhiqDqZ/D6xVXuprptHy/5/smozhfNtyIZg3pO/x0126jy2qRfiCuQRpJMj+D5x6b0iRjb3CfYXDQr1s2fTp8p0/jz+hr2xAMBRt1/WOg3/AFRvtQzkbkT+P8fjXtaUiPr+350kBO5uKXfa7hj3YO6nTY6RsRt0M6x186SyE223QAL3gLKLmYr41RRlkSR1KqJOYjYvntYQdyB94zMe6YP4e79NNRWcrXFFBKXOkhSR57z1mfKOvwNlSDchUWJHtBTXB8cVS2XU6gw1u4LhGu72GUgT7viYEiOkGpm9wa3dU91lRiN0zAHVZUqYKyw6ATIWDM1C8MxuHSST4SNRmYE9OjZgCdT4XJGmkk1w8d5hGn5MGCLGZiInce4Sxy6wGbXzinXMc53YFvgoIcGjtarSFFFFdmXyQl5z9yeLjZ2uMEWIUAmBOqjooJM9BVfvF7dy026qwnrEhss/X6itC8s8lYnEibdvwffc5UPwJ8Tfoq1WHCdiNkk9+9uFGa4bdsBVA1JN54H+oes1zzG8EpS9zo5ADr2bXsTva23mNF3zob0wxMQsjnpnOAsOsuG3bwJDrXI5g68rrOFrtFKi6Q5DaLv0Ok/TSqzju0F9lYgDy6/OnN2m+zfauIcTgbpsq5bJYvy3ewjuHRgA1sP3bEW2V/CM0r7gz7j+Q8Uv2Q39Fh+psp/Cso3Do4zYldajxBs7MzAvjH82Ow3/AIiKrWJxBO9Tq8l4o/5L6vbH63qT4N2bXWM3WCD7qkM31HgHxlvhU5jWMTEhe77IVKw9hnOVQWPkP40Hqa8Mbwy5mIytA0kAkfIxT24dy7btLltrE7ncn4nr+oV44Pmb8izZ1LWmMwsZgx+7JAIO5EjqfOp1GY3yhrzlB42uqHHG1ENK6SFnWOFjlzZbjjYkHXj3pHWeHMPst9D+6r52e8hXMQSTmtII8TKdfRQYn47D1p78vcbt4hBctNmHXoynyZdwakJrWQdHoy4Pc/MOQFr+d1x/EPpFqWsdBHB1b9rk3LfItGvj7lW+U+S7OGOZczPEZ3OsdYUAKJ+E+tWSiitDDCyFuVgsFzisrZ6uQyzuLnHifnbuCl+XPt/o/wBqpioflz7f6P8AaqYr5w6ff27Ufc/DYvrH6MP+G6b/ABPxZEUUUVjlvVRu2k/9Vf8Aov8AqU0uuJ3iHaD1P66dvMPBbeItm1cBKt90lWB20K69YjUGYINK7m3kTE2nbVCpJyG7mDEbgFraZM8bqVUgg6RXQeibX1UJhiaS5tyfAlY/pC5kEgkkcAHaDxAVP4leOa1/Tb/7DXzj75yvqfdb9Rr94lw6+GSUteFpkXWgkgrH8lI33Olcj2LzSpW0hIIlrlwjURpksN9TFaqTDqmMXcw6d1/gs+KuE7OHvXPi38CfFK8LlkuciKXd2yoi6sx306aDUkwFAJJABNWnhXJxfLnxNpQI0tAFtB9+48D52j8KZXJ3B8Nh/cKZz7zF1e63XWCWidcqgKDsBVDV4n1V2xRue/kGu9dPhdO522vew5qF5N5H/JrZd4a+ywzD3ba793bJGon3n3cgbKAKXvPHJP5Rfc4Z1bEiO+w7yjHSbbWbjgWnmyFLJnBUqxkzA0Le4kmUgKXkES0oi9JgjvSy7gZVUx7w0NU3CWkS4Cgz3CQ7N96NBEdIgaTA6mKldHcAxWd0tXUtMfZOUOsC53BuU9oN53ynaxOqr5cVp4ntaCHXIuRwF9SDte22/gs9/wDoPjQSDhMT4d4s3GH6JUEN+gWr0wXA74OX8nxGb7vcXp+mSa1lZ4nA/OI6H+hcZf6wSPrHzrtwuKVhKsGHWDMeh8j6GoVbimI0lxU0xb365fJ1iD5Faalp6SpH1Ewd3aX91wR7kl+zbs3vM9u7iF7tEuW7uRtHPd5jbXKPdGchmzdECwc7FGPbq0Cqxa6VrPo9r5Kt1S5/Dq7AbD+sXK/pcpmw+yBv/W/8S9krj575nZcG+GjwF8MfVyWxt5wIGpVrGFEebfCexK9DYUwWElTKejbZvjBYfOdwCNritD7XEGXtYg/l8CVzvo5iow6q64i4yuFvUf8AyAHhdKWxytcW1euOCps/koZfXEm7l12hRaKkDZioMQRUTwy8VM76ajzn+J+UU6+IcOzrdSSFuqgYSYzW2Z7ZI2MMxbXr8TVbu8h6XMvvQcsn3nF1jm8gHtqoHQFifM1nZcLlY4tAuNfQ/Eiy6TRdKKaaMPecp7IPiQNfAG48BfiFauzntLe1YexcLNZNq6tp1BL2iLQt2kVQUlAbcAAqc1wsWEE1fOeOV8Hes4C73uSyimyGUqVdcpKqbnuKyujeIlUP5wZlJQ0mMBygymFfxlQ/dsBJUe9qCd5EEDRgy/zqvnZ1zZbtJcwmNR2skuYbMzWWye6q6lVMShtZcr3GaYOZa57HRPyu3Wkp5mTsEseov7/fv8FJYflbCrp32HjSCDaYn3p3vwNp94k67RreuzTl7Co1+9bcuoXuyTqiqQHuQ2VQ0wJgEKNAzSTVTw/+Cxe7sJdKh8ne94+QkvlMa6oCZzmAUUkEnLmk+cebLItDD4SAhCszJI0MtkEwxZoUkmSQSD5UgOPFTaid0wAI9Gj4AL24xzNFlcMkhVRUdmJmCEOQHSQAWtEnRoJG4qvYe5Pw6fx61ZuReTyxJuAQNh0WQV16Fuo6AesV54XgAHhO6wra65hOaR6nT0CiKXEwybKFUzsgsHcfnVSXLWBDIzSyukMIiChgRBHx9IaCDVX4jaFm4yuoOHvQtxdQqa+F11lcpiSCCAARqi1eOC4fIH9cqL+Dt9IUfOuXmbhodDI6UzVYZHW00kEw0OneCNiO9psQeYUSStLJWOjPAFIntk5HW2QlpSFdSUPvOCWt2mhj+cZsxsy7szkA6n3Tw9lnFDhcMUuSbbXyEncI6oGJ2hbe/lltMNcpNNDhXC+/s92znPhrpyzqchGZFOs5QwEf/CA2pac+cLzM9m34cuGxN1gBAj8nu2ra7xJe+rQBvb2EiOZ0FRM2Z1DO6743Wcbb2PZd95uvmug0kzZoRLbWyXfH1dLzyXcKSFRWZRckqULPBOitqBBLLqdwasqYy7e7u2AGJAFqTJkZhIvSVDD3ZZZkbTFag7IeDq+GV3XVoLGJJlQdtW31gTEjSoDinZ9hcPfN8XbneTbILlZi3GUFntZGCx7sK2URrAnX07miMF3zzTM4e52WM6pP8u8ZxNi+qXLMvbIbu9SfMldTHyZl6SJrQfOvKJYMGLZT16idfLbWPl8aX/KXJX5ZxKw+a46pdVzdkqAqkM4WAo8YGXQCc23Q6b50CqhMAnpt8twae6mORhcNrpz2iWGRsb7FxCylxTs9Kq2Vi0fj1P8AE0qe0jly9Yt53BS2SAG6s33QN5gTHlrtWqsZgyZI0np+uP10s+0zgN1lzKpbKIjeB5r+Mx+uKQzK2xaFMmjLwWlZmt2G8LZ3IYkCCSBlic+ukzpHlWkeX+z3hlzAWrzvftYm7aVra2rj3XZyBtZuFlKsREnu1hh4hAqh8KsqGAuqrf0kUkfUT+NMPl7iFlD4CoMAeEAbSNyCY6aRTzsRFiMqq4sHOfMXm3IfP5FUn/0VxFlt9oDKSY23B8QB6a3CNdIqz8Ev3V1yM3pvr8Yy/Cr/AGcMLoJ67gzm8idN5PWjCcHhgY3J9PhHx386rpBmKuGMA0X5gASikqVYiSDBiZ6jQ/I12Wbkfh9Tp/HzroxtrXT5x12IPT/kT51zu0HT1+EgiBHqJpsixTzNQqr2p2syADdT4jIGyMQP2xHQDpSKuctm6VKrE65oJzEwdTqAACBoAOpBJJp788Mch+IHoRu2vQlZ13ketUzE8U/JVD3QSTcEhAoMMSzNAA2AMQAD4Qd9XmTOb9ncqFLTNkf2tlQudeTXt2O9CnKsAwAADvrGknXTU7SSdTS+HYYu1sa+PMr9ZIDMvkRMQTJ861BxfiWHv4YogVhcBBZlKvJEaQzCQTtABgaDQVnEXDaBX/KWrpA8/wA5bcb+QIKx5sp6QbCjmLrg6quxOmEYDgLA/ktM0y+yrs+F4C/fH5r7Cf5yPtN/M9PtfDeq9n/LpxN9UPuL47p8kG4nzY+EfEnpT85t4wMPYGQDM0W7KgdYgGPJRr5e6OtdHxrETEOqjPaO/cP5r556GdHm1bjVTi7GmzQdnHme4ep8F64rFye7TwgCDAgKoA+AAA8p6eYqlre/L7vc2pGCtNN19QcQwO2YfZJGnmAW6LHLxlrl1lwFlizkA4290E6smYfHxRuSF6sAx+XuDpYtratjwjc9WJ3Y+p/cBtWQtbU7rrl+AVT7R2i7gVA8JxVxDGyj/B+LKfLMco9WrPnOXC8l1wBpJP8AHzrSnP2GDJHVblu6h/nIVKxHqpBG0SDIaClOebSvcLAhZ+y2hB/pR3cepYH0FV1TGS+4V5hVSyMEONktjYr6FmpzjOEW2mcspH8x7bn+qjEj6VS+I81RpbtknzfQf1RJP1WkRQPcdArabEIWDVw8tVI8RdUUs5hR1/UANyT0A1NK/mN2vtmIhR7i+Q8z0LHr0GgExJmsW1y62a4cx6DZV/orsPjuepNegwXpVzTUmTU7rMV+JGbst0HxVU4J3ll89pip6x1HkRsR8abvK3NouALdAR/P7LfuPoaqlnhvpUlhMBV3RzyQHsnTlwWPxnB6XEW/WizuDhuP1HcUwqKhOF32UAHUeu4qZt3JrSwVTJRpvyXJMVwKpoDd4u3g4befI+PldTPLn2/0f7VTFQ/Ln2/0f7VTFfOnT7+3aj7n4bF9Q/Rh/wAN03+J+LIiiivysct6pHBX0tr3jMMxkKPuebH1I2OwEmZIiD4pjlcEGGU7jcH6fUEbVcMZw9BYW26glvG06EEjSGEMpVYEqQQc3maW/FuBOmZ7TI4EkretqSANdHt90W/S129411ToT07wmhpvZJWOY4E3cBmDzz5g8LWIsNDwXJ+kmGVVXVOma4ObsAdCAOA0tbje/FRQ5Y7y4e7MlLdy6FOhYoUUKDtmlwQdNQBpMijDCNJ0O5EETB6ggiQQdxoadXZnwi87Peuolq2Lb2kCqQ7sz2nZhmLZUQW8hkHMzQIyNMnx3lWy5lgZ+8GAb6xr8DpXWKWrgrGCaI3adtCPjZZJ+eAlj9x3gpN4DCt/NHyYf2jU1hkbzH9U/rz/ALKsmM5OUe5cf9MKw+qhCPjB+FQmIwN1DBRj6qCw+qzHzg+lWIbYJkvBX26iNZaPPb+qAF+cT61Z+RcOospc+1cGdm6kkkjX+aPAB0gndmmnHEdDofI6H6GrnyFwy8cLaAUMB3kZXX3e8crMkENlgEdDXjnNFrpp40UniLoqucYw8HOphh1G/wDxHodPOrBe4XcHvAL8WH9mai8UtsaNfs/0VfO39Q5CfkTXlRJAYyJCMvG+1u++ibic5rwWXvwtv6L74Nj84194RmA/Aj0P4EEaxJhrXSpDhXDSDntklAQrs8rIMkZLcTuDqx06E6gx9rpWM6K0dLTVtW2ke1zD1RGU3y/1l2320O2psLA6qP8ASLWy1VLROmBDh1wJIte3Va/r39y9krosLJAGpOwGpPwA1NSfAeBZgHuEqhEoqxnuD7wJBW2h6OwYtEqhUhqtODshRlRQgOhCzLejOSbj/BmKg7KtaGqxWOIlrdT6LOYV0VqKlokkORp8yR4cPM+RVSfCFFa5ci1aQS9y4YUawFCgNddyfCqIjEtCmCaqGP54OosJlH+duhWuH1Wz4rNufJzfPUMvTj7V+Zu/v90hmzYYqI2e6JW5c8iF1todRAZgfzhqtYWqSbEJpdzYd3zdbmg6PUdLqG5jzdr6bel+9Xns2cs952Je4MhliWZgReV/ETJ8QtLrt4R0q/cT5ft3R4hDRC3F94aEKZ+0BIOU76ClFwPHNacOsTrodmB95T1gxm+IBHu02uA80WLiKC4tOo2unKuxEd7GRlIjchpAOUECqWoY7NmC19LKzJkK4rPJRB/ldNIlNfeMzrHuQfVtNBrVu5Z5eS1qJZzpmaMw3gLAGWc0GN9OkAfuHxKkaMmvXMpA8zIMGOkGDprBmpngPFsNbILXUME5VVu9dnZiSStvMw1JAkak9AASyAXaKQ4tYMyvHCcJkQL13PxO/wC74AVF4yxb71mCjUBbhmAxB3kbMglcw82B2r6xPFGbQAoOuoLfLKSq/EFjrplOtc9ryG34fAen/LXWpjBlVa45t0W8DPun1yto23Q7E/Q6da8cYPCQdPQ6fhUglcvMWPhDmhhHXcfA70+2YjdRH0TSbt0S24Qcl3FXSYRbYUx1YkkR6gCP06p9vhjZ2uRLMZOs/m/uGTrlAEn+jpotXDgl0W1v3Lrqlu/lFlXIBMBwWjqGzLEaws7EE/ONwM28wYIFOZiyyxAjMoOZd9B1Go32PJKl76nF6mSIjKHNGYccrGgi/wDCbg9+i2+DNEVLlduVO8i8JFvDW0P3BPxIHX0Gk+gqt8U7N7d27nJdz5O3gXygLE9d46bUy7GHBHpXhecKdNP4/wCFbcQCwB2Xrah2clu6++UOCW7IVUAEbn1iPp/x9ag+0vEzmUHSBr6zVp4Q4aRvA1/HeqTziviOmp3jz/5frp6UfV2CTRa1Jc7cBVy2xgEif4/brXlj7gOyjTpptHz2+O1R9+9f1CrIAJ+PnGkn+PnA2OZIfK0jWCANZE/Dr+2oeewWiZCTryUrjOVbVwyyD1MefnofPca9a98HydYTXJP7vrPnM7a1LcLxqGCDv0mY+RgjpvruKlRcX8ZiNvmAf+VNloOoTRBBUbZ4Sg1AgjbzHXf18ojQUYi7A9fMfs/g/rqSxbgiRp+v69P1RrVc4jcPTz/Vv++kv7CS3tFc1zE67ec/rn4Vz2mPwAkz5V6XfrXhjsQEHxkD6H6iSB6TvUe+qkkC2ipfHcRlxKoxnVWE7SSqqTqRImI0jTyk3huAWWW211FYM4zA7ZD4XX6eIeRjy1Vt/GB8UuumZgWjQiNPUAzqIWCB5sCwMZhLt0WURgqKtw3T9tpIFsKPsgLmkCN1G2gUxwDrptoJNr25pU8KtWxdxFxSRhrBfLJmQhgAa+IsYHrM/BQ3LxZ+pa4VzD+dmY6egJB+VOvtodrVoWlCpaVoCroGf7MgaaAmPX4ClS2ECqtwe7bhWPmxGfKTr1efXQedWNKALnmq3GnXys4AX/mt6cjLbwuDzZlN68VdxmGZV/yaEbiB4iOhZqOc+O/ns6Q5spbt4cSGBvXRmNw9Mtsak7ZktgxNUuis7P05mlkMjohc95/RQ6HoXBSQMgjebNFthr378dynDyDgrGGtZTetNcfxXX7xZZzruWkgTHrqdyamMVzFYXVr1kfG7bX9bUhLjQJpadoSO+INrvEGUgKhibjaiQCZIQyANNidS01JpOlMlQ6xjAA7z+ircZw+HD2tGcucdha2nM/ktWcV5hwzDW/Yg7E3k32IBzaidIG5G4gGqPxVMK+92z8e9tTPkPECT6AH4msr8S4oQx8MsIQBpBDtmgmT4FA0yrqTMV9ccwTF7FpJ8Vm5qNDLK1ydNiypHzJEQIs24m/S7QN+PLVUPtR5LRGOt4GCO/st5/nbQ/2lxBSz5u4BZXx27tkodou2yw8wQG09NTpWZOO424t1ranKFIEACCY8RYRDb7HQCKluGsqXBEAMFzADTMVzbfzTmHnAirYVD4wHW3F7JT5LjUJwjArocywesj/lX7hUQ7MpjeGUx8YNJHGc0XBbyqxUq5Ej7oMag6HQKNfL1q08EutdtNdRw920uZgAA+QSWDFQFcAagwpG+sTTr8Ulibmcwb23P6KM9p3KZuVPvL9RUjw3DAmAQxiYEExtMDWPwpSca42wCOihlcZiJgg+hg6HyOm3WaOG81nOjpmt3rZlTA1H2l0lWVuqn0MaCkf05PluIx7/AIpLYwSM23G26eacNb7rf1TXVZwDeR+h/wCH4VJ8m8fTE2Uur10dfuuAMy/jIPVSp61M1nHfSFUROLXQAEfxH9FsB0KpqiO4lJa4fuggg+ajOAYZhnkH7PQ/zvT+P1y3dHyP0P7q6eFbn5ftqXs1NZ0cb0jb/SkshY6TdoFwMn1e9xuGX24rMy9KP9l5DhFPCHMi2JJBOf6w6WOxeQNdlAdw33W/qn91d/COEO7LKnJmXOTC+GRm0YgnSdpqesGu6zTb/o5jG05/7R/9k6PpJnkbYQtH3j+ihudb+WXcqqkgZmZVWTMCSQJOsDrFRGA4YzuqlWAJliVMCDA3EaQXjzVPOl77beNIwWFtru+LzgefdWboH+tdX5xT6w7AgFfdYBl/ouA6/wCqwqFS/RxSwyAdc4gcwNdr6jx/NMTdIZTAJAwa6b7b2+C4eIkgBVUwAAAATAGgqCxCOfst/VP7quSTXLxLi1q3pcu2rZ8rlxEP0ZhXWaesELQ1rBYbLKOeXm5VOaw/3W/qn91eF3Dt91v6p/dV6wuIVxKMrjzRlcfVSa/HFS24qf3R70w4kJV8cvquVbpVc5hFuQMxkDwq+rGSBp1I86XnaV2bi4Dct4dheWc2W22ZgPLTNnXoOokbgCoH2keMd7xzC2QTGHbBW4HS5curfcjrJW5bH6IrV3F2l2P3ob+sA37abdiXWOyOYNr+tlKma6nhbMONvW5/JIHs+7OHe3aa4gtk27RbNalgSik5g7WzmBOoBJB3g6UxsFyXbtjVmf0ACj5gSfo1Wp68Hrm9Z0CNVKXmpcASTYMGnne6mN6XuY23VA/eP6LivWQtkqojxpoB5BvmfifSqdwPh2d1V5VN7h2OQasFOnjb3FjZmBOgJF3umoArIikl56JAsh+s64ak6ZcnK173z+imUeHR9LC0z9gQOvYa589rg3tYDqx43Ks+K4h3hz5VTwqMimQgUEBZgAgQQGAAIAgRFV3mPmBBh8Q1q9bNxbVzIVuISHKNlKwdXEFlG5K7Glf2o85sveYe0csTauXPtAzluIgEAFdUa4ZaS6pkAzFV3uIRCqIVdh0E7/MwJO5gbxAm0VfLOzM5gHmtDUYbHE62f0TJ5a5bVrWJl7S3Et4Y2Fa4ihjcC4h1BZgMy2x3W8B3YGIJHFiMObbFWygjyZWUjzV0JQj4H4xVMwvFD1g/EAD6CAf0ga7cG0zA+Q6T/wAoqwEruIUT2dvByuNhh5iPjUng3HmD8xP7v1VVUeUHodfwH4GR8xUvwzEBY/E9T8B5epI60dabbL3qGg7q1YWKufIeUXlL9NUEMZuSAg8CudJLDT3gtUrhmJLR4VPkGZZPwBhvpU3w+8nkUPxlfnJkfEDSmjUO5J0UzeacuHx1s/5RD6Blj5iST8zHpXdbxiffX+sP30qLiZzn2f7fq33x6t9rzaT9rWUwbg7ifXZh8xof0gfSKOuQKfmU0LFwHUEEehmqX2k4s5ci+85CqP5zGB+Jrr5ZxWUkHVWG/wANmjzWdR5EnWJqI42f+soW922HumNZyoSI+cH5VX4niLqWmkmAvla5w8QCQPelspw42uqF2jcgtiMcly5dy2LGHt2k3GXVmuFR4QHuAi2XV7bIoBVg0FezmZlsWEVnE5QtsBwJP2fApCsYEADMNgZjOVVxvtPuYjEDwspMaW1BZJUXFQOxJHhI/k+7JgyWGtdmF4uLuoVS4JzPLOwUlIAZj7xYmGMQJjMMtYykhmho44JNw0Xtz3Prfx3Wup42hwWpeG4r80D6fsBHrVM5r5kW1uden46b76efn8ameELGGtxGltNiCNFC6HYj16j40nsVN7iluyfdXxQdpAzEkE+W3mRHWK0zpHFrQOKapY2h7i7YXTOXnFMHhkNxouvNxwdyGJCf6qqvxB9apPF+1a24LAHNJkmAsfKf49aYnPj2Ww9xHVXXIRDARPTfQEkCCYnTYa1krivMKYZnTucgDFTDu0lTBEuWgAyNMuwkeXsjjnDAeGyepZIADI9upJufnh3JmYXtctgnOLgzaSbV4L8mKBfnNfvD+6xVwkCR7xO3oROxgdPT40nn56ZgWXKFBXw776QC0n5wN13q0cr84lCYYAkjQRIBAIYZtvKddyTtSCLfaurKKtjIOXj5fqr3xjA3sKc1ps9ob2zuB6H06+ldGA5xVxGx8tvpP8aVCY/n1GUgkKQcpzEAZh72YEzGmsag9R1qv+EFzyF1IUkLB94AyPQk7ED4neoZNj2dke0AnVOfCcSkbzI+On8a19XnEfAfEx/w/ietT5aaYhpBAI3/AFeRj9dT5vHffyJMCBr5HoP46JdJmSXW3C95ESdB59I11naBr8qrPODDITrlGzaSCRE9Op+oX0FT1y7MkEeHoRpEGR5SYJ/RO1UvF8Wzq6H823iLKeuviUDofDEwB41OqmaS7klNPFL0Yo5lllyhpBB1E5RPhgyIBga6aZqdPCOJIFVpWSstrJmDCjz30Hr16Z64lNu48aknQrMEGc2siZ10K/IDagc2cdvF3i7cCksuUOwGXyKAxBB6jXxTOtT6Wl6w6FVtRiDaYEubfuTG7aOckvYlLVs51tNmusIKlx9kHYx16TpuDC4x+NZ0yz4Q2YrPU6z66/qWofh92Ou+h+AM/jA1/wCNdNt4OnQ7fx+v4VbtgEeg4KhqK59SS93u5Dkt3183HABJ0A1NfVRfNN4LaYkwoK5j5CQCflXGIWZ3hvMre1k5ggfKBfKCfcLqpcwc2tcuCzYR2IYTCtAgj3jGhDfZG0SSfdql8yXGQsWcrqZysQC3VoSGZumrH4SYpi8J4zaKi3atXCAI0yW7YHQtll5O/wCc1OpEdFfz8We9ktqABu0eEHoFncLBMtPUwYAGtoWNa7I1tgPf4rkFVWy1cvWSm5+HcOQVfxoY5WXUtqS0/mbLeBniM5e6CVDkeI+7m8NNzF4ZO/sXIIi2ZMafmluWri6bEC6lwfzVYDU1X+VOTGLLZTW7fDXCzzIZcttLlzNqBaLG6q7gIsakAWTtOsLgLVqwJdptOisvjZLQCiAdu9uOlqCQPzgGulSqh/WlrWd48b/pb5KZyki4XJyn2W2Lhz3Eksxn5SsyPgK5Oaewu0Je1dKgHQNqJ1gA79SPhTq4RwY4exaLgIbdpO9LmVF1lzvbUiMxUtBbQCBpJy1FcW4jntWyFE+NjJymSYBKSW2Hz6QDSmzSNd9oqdYgLNnE+xkAGbpn0FRXInKVzDY/DkNmQ3AlwbTbcFWBGxEE6U7eaWga9egBP100pacT4hkYMCQymQY26ddNianNrJnNLCbggjXvXm4VC57w3c6CciXbqLH3RcYCJ8gI6jcda8uFLLW9cwYSrjQEbEEfZdSYInyOxFSHaDiw9jL9pWZvjL5ifowqo8pYszlnQGR/SIIFWcLC+nudxdRwLtutJezdiB3F9PtLeDH4Mi2wfmbRpq0lPZ/cLfugERctAqDuWXISB5wHJI367GnXXN8cZlq3HnY+n6rpvR2XPQs7rj1P5Ls4V1+X7alrdRfBxq3y/bUvbFdm6En/AHND9/8AEeuF9Ox/v2f/AA/w2LosVIYeuKwtSGHWtDIVSUwWbPbfxRz4BR9i3irkf0nw6j/7D+Nd/BvaZwtnAYZO5vXsTbtC01uBbtjuvzdtmvEsYe2FaERyCGBjSeT2qsE17HJbAnJgUj+ldvYkD/ZTWXIqvmBFnDv/AEW0oI2SxZHDa3rqmvzz288Qxcr3pw9s/wCTw02tOga8GN9vI+NVP3RtS6t4vUkgSSSxIkk9STuSfM661HCvtKSx6mupowLAKx8LxmVs6+Bxs6Eo4+DoVcfI02+SO2zHWIDsMVbH2L5JeI2XEAG5O2t0XuulJHBg1ceWcGX029fU/wAa1IaLqjq25DYa9y6eW+JviuOWr9xcpu4vvysyFVJuooaAGCJbVM0CcswNq22b2Zbbfet2/wAFy/2azp2GcgC/jCHE5MLfuWz9y6Wt20+IKu6wdIJ8ga0Nw7h5tWbKNuqMNfIXbuX/AFYpmNwbPlvwKViBdLRB9rWIHuuPzXy5rwuGum4K5rgq0asfIue4ahsOgJ1MDcnyA1J9TGw3JgDUipm7UdwoL9rUHp5kFCPTqSJ2ZUI1ArnX0gEB9Pf+P/Iuj/R24iKptv8AV/51nDtZHdYm+GjNnDkAzrcUXoBgTAuKNPWq3hbGkt0kt6neJpo9tnArdu++Iutmv3QFsWRBARM1gYpwZgOiAWs3VSyhzL4ZfJZzZLY3cmfgd/w6/Dzp6hdaFg42F/dqtHUHM5zuHBTnZxyc2JOd5VJ+Ub7aT00kDUEnYF8cA5Rw6AAWxPnJnyJkQAT5gD5VE8m2VVFUbAf8vqSW+dXLhxr2WYvPcoYbkCisX2fYdgYTJIYkrm2G5mSgIzAhTvrowBFRz9kJ7xBbdsrJnzuuiMCAbbZAwzQcyksA0MBOUksrkvBEm6SNDckDefBbQnYaEKNDtGXUCrZe4WrLlJMEg6EqfDqNVIO8HyMREGlsLgbApoz81nvjfJ13CiWi7ZY+8u6k9dtJj+idNdNOS0Z2Mn6fWdJ+ZrSHFsCrKZAZY1VhIj47+vnVI4xyZZceBRbbWGAA+AIUCVOskyw0g7gvtlse0vWuuNFS+CXtB5wQfxA/EA1OWk2Pn+H8fsNQtrCNbuFHEMGg+usSD1B3BqZwjbV6RYqQ03apbAPGv8bQfw0rx4lIZbiie7MkeaMCGXyOkxPULX1ZFTXBbEsAeuh+B0H4xTdTTsnidHILtcCCOYIsUnMQdFm7tL5GbDG7i8OO9wzkXAwXMbByraKsgh8mRchP+T308QFA5D4rBZYOVhAk5RmkDf7JlEUxuI0011pzBwO5ZJuWGKncjdG/pLsfKdCOhFKDnLg9lbdzG2EFsPcWzicNl0/KGKEPZ0yiZFzwgEETuXFY98c9FaKc5mu7LZON+DXjmQLBw0cdw0nW8pK1rngO0/NODs7x4awqdVzJHllLafQACOgpP8188LhcTiLkKGmRoQzICV8LiDqUY6EgTEyzATnZlzLFszoScykkQwg5svumdcs6xDaiQtUj2ieCG6wuWV9+QQI3VDMGIAyjNBPukGBuZrXCRjWuNrWvZWbozHI9wG91G8xdqBu2mGYgssmIEgZkg6iDAKxlgysBdwlOb+MXLz6+Jm3Y9RqPgNNPIRVl7OuR2xV0p3jBVVwjjTOAxga6w0t5xEaaV181djFy02Zbuu/vjMJ0336wD11q2p6eJjs19VF6qeoblYB4XAS+wtu4uYZSQR5SNxp5R6f8Kl+C4g2whu/m01Ckg/nDJYAmIIAJ3MQB6V73eRr3W45ESZeflvv6VLcrdmdttXJYzoo1gaHYR676bedSJDHY5j7kqPCKwO0aB3k3A9yrXH+P2y35su20iAVJGgkEwwAAGsz13M+GE41cUy2YjUgMPEWOu/QZjmPpIrRHJXZ3h7Xj7tSRsCAVB0M5dtP4mAapnbDy8uY3VWNBMe7MjL4h1PXygedRnTxNswC470qagewl2e5HIWHxuVZ+yrjP/Vy7yNZ03WfEGHQLrmGnzM1LcY5oOi24IYyQdCJABEMSYcaxqRJ0pf8AIfHsli5IlQB4VAgdGzA/e1mCD8OsYL4ZhlMAEMoJzaAkiNDqNY+nSqx7O0RwUpknZHgmanED3d8FiC3dOjQehgjwjY95oTM5yCdjVbxIZw7b5hKmSQAAQHGpIjbxCAANetQGN4kzlj7uUCC5+5ltklQc2oga6+WbKQJXhWN7sSGIDKVMeIgNlYg5gSMzKCsjVRprv4WEJYlFrKs8yXGaDOwht9cums6kkTJj56lQneJOSxPqf3U5uZIuXMqZsqKTqQSwVcxErroJaTqQZ0kmlRcw4ZjlM6kA+Y89ddtfOrnDrNBus/irS4gBcXDsMW+ZAn4mKnuFYAMRmOXxFCSNJXLmGnlmBI8iN5r3wVojIq25OYHLrL6gBfD4/SF11MEdJbiyu7AxlZ1UOipo7KSFNtEVbYCo2kANmN0sWLyZMkubuVfHFlWv6iec7SthsQHOVe5uZmicoynUDqQYIHUwOtSwFV/mhLlzwZfArSVEnvXGqm60ZVtWzrkBJZhO8Acgooi+QG9gLH571t8ZrRT07hbMXAgDy1PgOPlzS8wHETh7i27i+G37wmI2ZyFGjOdsxmBr8alzdx8XO9ItGLdvvAufKArXEUFj4gTlJaTMws7kG0c937f567dtsTCu0al85kHJmRQIMwTtuBtS75h4j4CgDRfyM9y5lDPbWHS1bRBlW0GUMTmYsV6Cc23ooQ5weRrpf4njy+d1ydo1Ws+wPlhHsYTHMJV+/UWhPhQ37iqWckG4fCGIIEn6GPfhCcR4tdJZUtYe9ZyWTE3BaVnDF8xLDvSWW0sIkhyS+TJc+xbAOvBeHlQCRhkumSAJujvdSSNJaSZ09KoPb7wzFYRBif8AqxZwe9VXNm5bJywEY5u+zFYgBCSJgiYbcx7XFrW6XBvoN9Nzz19VYNaL2TB5hZEdHcSiW2xDhpuJmFuQDrsbjJAGhNVfgtruMGRmD3R+TNcfSbj3rHfGST7qKykTS27KcTiuJO+HutiLNi0lq7fZlHeXLbFmt5GylMoyyCQQYgKZJWqc+8zYgX8QisXDOugED8yi2kUDUQLaKp+Br1jCHZTv/px8LL2TkrVxm1cu+Jibdr7PV7nqo2j+c3yBqic42VAICn4nX61x4HnDiOLYoFuDIhYwiAC2hVTlYkK3vbKSd/KuLiPE3IIzlo0YMIIPkQR+O1SDTviIukNCp3HsOT+cTxAfyi9U6SR90/e20+kLc4aUQXNgzACNj1n06fWpbjlswXUlWAMEEg+okdD5VC8L5jItm04lCZBjVT5j0HkP3ReU+cx9nXXUdyQ6MjZXjsz4/wB3eRmIUghkZtFW4BkIbqEuL+bJG2YGDkitN8s8ftYlM9pww2ZZGZG6o67qw9dxqJBBrGa8RcEGVZSRqqg6fAneOlNjgePTCJ+UYTErcuG3aa5hntwLgz92baOirmYEwoAkGFgEMDQY5hAqQHN0dsN7eB007uSvMCxN1I4tOrDqeY7xz7xx8lpngg1b9H9tTVpKheVmJBJBUlUJU7qSCSDGkjb5VYrC1tehZtg8I/v/AIj1z3pu3Njk5/ufhsXvhrVSFm3XxhF0rtSr2R+qraeEAXSg7TuEA44XDqTZw6D0h7+//iN9TWMebuGdziL9r/N3bij4BjH4RWzueMdOLadg+QfoIJ+YbMayj2w4f/8A6OLA++rf1rdtv20xe+i0tEMm/L9FSorswdia5bW+tT+Dw8H4ftpMYupNZPkFl38E4UWYAbkgD40zeZ+WvyRLc6MAC39I6wR6CBUf2I4AXcfaVoFu0Gv32PupatLnLMfU5VjzYedcna/zwMVfu900pmMN0+X8eVOh1n5Ry1VLkL4i925IA7huStHeyVfW8l+8IzAW7bR0ILNAP0PyHlTa5uw0ZCP5w/Uf31n32A70f4QtHX/s1z5nv0P/ANorSPNC+AejD9RqqJyVt/nUK2nbnw8t7vgVTbluuS6tSlyo+/V/GVhqhgC4boqI43x57GqYP8qVlmxcDGAx1e3ftojMvdMFZdZylQr5SwSZvVX+K8Dt3cNcNxjlWHYBlSAni8TXFZUB93PBgFt9qw3TaURzU5Ivo/4sW36BxBzJ7niznxD+Vj6rO/O+Ku3LzXb9xXv3GLXFXKwSIVFLW3e2CAMotKz92gUM2cuo4uVrn/WRPQR/q/v1qLsAlh0Uax1jpmPU6dIG5AAr75Zvf9Yn1P6wP1Gn4GWaR3LS1DtQO9aD5IzZTmMlmOUaeFIAVdhOgDmZIZ2HSr7hsMSsAkarrGsZgWHpmErPTNPSlXwjnfD4ZQjS9we8FghZMxJhZA3Akzp4RBr0wfbNlY/9XDLmJEXoYAxG9tln0iB60wI5HOu0fPnumngWsT8+S0PwGwQPDoDtH8aVZrY0E0l+TO1GzcEybZGrqcxCrrLFgDoDEtIhZY6KavXGebVsrJAmVRfFGr5DmJYBciqwZm8UDYHYuRnJo66iSRucdFO8QvTOpETtrPpAkzIjSTuKixcExrsCZBBgk+YH8R5iqFxTtPtIxW1aziWJJYW1JJknKUYySSSRllpOsyfXhXaDbclnt5SY9xpAgROqgsT5Tp0r3I462TrW5dF3c/YTVLo8wreYO6n5gEemUedRmBarLeupiEyhtHGgA+0CfeJEjKQpK+HQnVtYqGEuxodD1+PUGnmC4Sw7LurDYqxco6uPISf3VWMKZqxcryHHwI/D9+vypTh2Sgm5UvzAs2z8KUXE3RbNgMBDY0nUZpcKwXQKTPURHu+sF04+zKEdevz0pS8z8vG7bu2AwS53gv4Zm90XUEQfl+smPDWZ6RtPsrZeDHtc7uGoJ8G5sx7gSplHIBKLpb824wWbl6HUSQVBGRgrHKYVocKXcsxZiAEDeYHHjMab+ECnMrkuhDDxAhixGvRDnbxQVVFHiLCoXtAs3s91LyMrlLjItzYyLbCNCrBDKFkBAyrsozCF4c9xwnu5iAI0RsrEORCsJzsTaYyxyosnYrEhDXszNsb8uI3Flqg8PtdNXsX4VaURoTJOxkAZfJAiqCY30OkCK6u0bB2nJU6QGYn5qFj4sQQARoXkiAp8+QOIZ0NySXYZYgAgK7oQOi5igZiV11J94RZMbg7VxQ0SwgEnNDERLOZWCujCCusmNQad69wblB1XuWz8wuPBZz5iwSW2vAtcYLbuXFEgfyZXfTrnCafaS4QSBFdHL/M6rHdCEKqZaCwnNmkwBppERoDtIqY5g5Ym42ZWECWOgDbDfWJgLsJJUAEkgwq8HS0oMsRBUCIOm0CQSQTGozAsN4Ip01F2ZSdUr6++ryR4q/8ABuOAjxEQYE6xoCfP9XpoarfafjwVKZioYeYgxDHr5kRJ0PSoLvg2YQSApJmTrplKnePdj3dydesNxTF95K7qviLNHhEhAogmDJiNRLRpJNJjYTZE0wy5VVr3EjalQSASdtJUkyASCY+IMa6V8XcUcpmB0IEevpEAnzJE9ImvPipzMJaYgddBqYggEbknKNyx1LVG3rQmOk7DN6mDOsjbr8fO3bGCAqN8pBsFY+HcddS5J0hSJBOi6KANFJ1zZuratLEGvi7xa44y25E5YWRtMeWWAfFssSdhXlw3hxYQggQAWYneTB08QHQSJ971ls8h8mlGd2ULEBJOoGVekQxVQTIIGgmSZpqQsZrZPxNe+wvooTh/Bu7wVxm1JtNmJ8JVj7qqxlZWRJ6GQ0wAEpgbOh/mmSZ03AkfXetX8b4CMSq4YQnfMlvMF90O0XGA08QUsYkSd9yaz1zrydd4fi7mEv5ScqsrKfC6N7rLMMJgggxlZTvoS1RV0RkdAXdsjMBxLdr+RSMTjyuaO5T3IvFbNt7NwhjeV2BWB3bIVynxZswcEk5csFWJmUCsy+JYjDi2n+C7l5LxUm5labdtFk3O8NyTccAeFl8I7vP4ASKR9u0I69CJ01H7eoI/Gal+CYm4pyIGm6UkEDxTookLmIYGIA1nrOsh2xIUIDXVautvBkbjavwUUVyS52XQbC90nu0T88L+WVCCGYiC57wDNHQDUD0BOkgUmONXmBIYiFQtZkiQACSkbwsSPIafB+domAGZxOXMFJ8OYbTGhzCSSdA069F1XXLPALdzHYa02V7j38MtzQwqNdRTm00LKSoU9W1ECuh4XO3Jfhv4aD58Fx2eLqqh0Z4OI9VvDlG0MJhMNhyNLOGw9mP/AIdtbf8AZqhdpXCMNadcTdstjcTeYLw/h5IKtdIzDNMggEF2uXJt2bQJy/my1X7jFwG4zN7iAs3y6VX+zrDhi/E8UVFy8pGGVyFGHwehSM3utiMovOfCQvcoQDbYtJgf1sln2yt4nh/M7AeJ4BONOpKmsLxG13NwkpbdZt4iVFtluqPEIAHhPvIdQyFGBZWDHIHPWKtLeuOLqyCWEjSeqz5RpMTrtWjO1S/w3HWyr3LNy4BC3LOI7u6up8IeywcoDPgYlSekxWdsfyDhbDh1zPrI7x2uZSNZ1YieoJpqcR5xrsNLD46r0jmF3YAfm+8sAQ48SkQZ6idwQdD0/XVdPLklrlwBdICjf51KcP4hkcge6/T+cOvzGh+AqG5k4oxlfOmg4pIFkvOb2AVwPWlzatzV65ySFaetUW1cIMjetLho+rNk47ZdfCbYLhSYkgSOh/j9XzrRHZlyXeBwuI7w3slzI6PbCqtnKwzW3bdluQdJnKYYTkKC4RjkNwG+pKEEFkAV18mEASVOuuun1ffYh2nWkw/5PfNwtaci1cW1dcXLdxzlMIrFCHbLBgeK2BJkCux81IhJhbc7EWvobgkcdP5qdhDIXVI682A1B7wQtEcu7v8Ao/2qn7NQHLu7/o/2qnbRq/6F/wBjw/f/ABHrE9Nv7bn+5+GxSuEOldiVwYQ122zV8/dVsB7KzNzdxknieHAPgOKx4c9PD3y69IXKfpWdecOOC/i8RfX3blxinnkHht6eeRV0p19sg7q3jn2c38ZZt+hv4u6rt6HuDcA/p1w+ybyPg8XdYYp8sCVWQMx08MnQaa7axFRpX5dQtRSMzAk+CSmKweYZl18x1q092rYaxdAIuo5w9/ybNmu4a55yyC7Zb1sWzu+uyeZ/ZqwL+Kzc7o/zirD6iNPkayt2wcH/AMHX3sW7iXla5YZ8sFWNphcQBt1gkqY2lhrSWztO26JaZ5GXQj1CrPCuKOLGKRGym/cVb7j3jZt6raX7qs/jbzy2x9muXCYTYDKo+85IH0VWuN+gjH0rRXZJ2JNmVsTdtWUxCNdTJmM5mLKji6qKGguUIJlUcg6GnZwDsP4ZbHiIuk7lnUT8wc3+tQ6oazZNtpHyHU9ngPn0WefZp7TcHw7EG1cFwpislt8W+W3btsjN3QFmXfuiXOa89wNqhNq2Fc1sTmH+TPy/WKwz7U/J9i1jVw+CDMbuTLaAJOZpEAasV6hiNV11ADHWfZx3i8Lwtu9nF61aS1cDgh/zTm0CwOssqA6+dQ5AHyskHMXT0oyQPj/hcfn3r2uVwXa7bjVx3KvmLB1C471UPnfC2RhziL9vvFw5D2lzlB3rkYdCSpzAA3veAJDRl1q/XhVD554ddvYO7ZsgG5eNtRL5BlR1dwdCCGUx4iFBGY+6KxHTF1qqkJNtXXPd2LrddAwepqQP+n/nWdbt8E6AKPDCiYCW0CINSToqKNz1kkxXHwMxd03hspPnpB/bUtzRwhsLNu7Hfk+NQQy21GsFgYLkwMo9zK6nWRUTyviMt5H3AcSPSIP66lU1iwkbfFXtYe0FJcGshrttbjZULJnOkhSwDkZgQSBJAIPwOxYDcoWxnLXAiwTbKw+bwsABr4wXCwU6EgxEiO5j5VBYOnuOA2myNAzAnaGOomIzAfDv5T5SdydWhSAWJ0yyubL96JOxI0+VSBUBrCbDXTXge7XfXj3KK6mD3AlxFtdCLEcjcHlbTW3JenIuDa3isPMMrNazAGRlunu2RtjILMhBGsEiVIJ0J2pcOAw1x4GltAm8jJlmSZ8JZbDmI/kFmY1T+ItLZvgJqLb28kwCcrArPSSSWjXVjvTk58sgpBMi9cFttoCLbe2xJmSZAUAbMF9ajPfezig6OsNkpeXuX1IBuXFBZZRQyliwuBWRgJKMEzNmcKutuCZIFnxvLirYLlgLmZAi5g2cQA5y5mZRPiBzdGBkFYk8H2ei7bEQrwGVpZlgqJRzlHiV9RC6o0ATbLVGYjlO+jqjIxLaIQ4a2fgxjKNdnCn061IbNdttOd+Px28l46NpffMfC4t47fmvzlTFMraAnrAk6xpoKmeNJ45+9DH4kAt9Wk9PgKm+BcHNgKGIztdDNl+7btExm01W5cBIGnhG9RnMry0/zmI+BMgfIQPrSWuGfReu+yvzA1YuEYoqwNVvhr1auB3I0IBB3kT8/OPhr+NOP7wksPJWzAYnMDpp5k7nyGg2rj4xy8t1dRr+2uvBsIG0em3yr9xvF1tqSTTMQF0qQ6JccycJvW1hgmItAybd5Q408mILA+ROaPKkv24cur3VvF4S2VtHw31Xey6ZSoj3UWAQekhI98Gnxx7jV68h7q0zjWDKrPwzssj1E1Hdn3I7G3f/ACkaYgqXsyCqqsiDGmZ8xDkEjKFHQ1i8ThoGVLHUDmCbPldGwizgftF7WmzSwdrMQNRY3JAVlQVMsZ7V8qU6Y84exbZPGFt2wsZZZ7i5EJRRA8ZuMDEJuWNdWC4+fzi5wVgS5YwZ/OHcgZnzgQGkAM2oEV+e0DyZcshrllbj2cqLlQsSkxZce9mC92ZBAOUtc1AgUmv/AEuRg5YEd2HIChSGDlYZfEhDSzMRsq/ZOqrNfSOzHz+fNaWOpblB8PnxTHTjK3Q8sO6AIkauQmUljmiGnukUmCskDUZBUON82CXDqJFyVX7K5YtiARJUN4szASRqDJha8O5pYKEA0DHT7wOkmZkwB4SG6xlgzwcV4uDqpUbg7l321ZjMn18PX4B9mHHNqo7q9ttFacRxcAMQ2VYVQFmGcZCZkyoGsBvGAw8zUJiseuZ2JyAoM0TuSGjL7x1A0MjMokga1XrHFSVKkyJkbz69N9ANToJ869uH4E3iIPlJ9SxVZiYM+fSDVg2mazdV7qpzzYL9XM2on3h7olpbpIEnQaD6DertyTyG7ktdBChVMmAEJ/OEs3uqAse80wxMaKKkeGcFtJ3QymCbYa4YaQSAQoMAxGXVCpIMTFXzi2PLZgVhFLLIKqXClioDZmfxMTmca5FIAEykeap0s1SYqUXu7VdfJ3D7RS5bsqQEOYaaEzKw4BMArOYGSYIgaNY+EW2GYkgmQCSczGBlP9ESNBqCQ0TE1EYS6DlVmZZkslvMgOgjNlAISDlA97Zy0klZnhIIWNYJJBbQkeHTLJgRIGgMaxrJgEqzjZYrs5Ptg4zDiNrk/wBVWYfj9frUbxHluzxKyiY4XFvWDdFnFWwScjNIS6o8TBYAA8l95SWzdnLd6MVYP/vUH9YhdvnGu0mmh2f4FC91SNrt0fR2FQqTDo6uueHEtcGMLXNNnNIc8G1wRqHAEEEHiNlS43K6N7XDlZZ5XsJyse7x2GdOgvW7lth8pfXr5elMbkHkO1hn70RisUYi4UK2LMaTbUmWbyboNsmuZ63OVrZ6CurB8GRdgKvD0d63szzvezi2zW5u5xa0EjmBlvxuNFRvxF+WwACR1FFeuFwzMYVWb+iCfrG3zrkwBJsF1Vz2tF3Gw70mO0rixOIVLai45bIgOg7wsVlp6IApnoCfSofssxNv8tsOhHd27yszAZRcuA5Q8ROUKHK+iz11vfGuynG3L5uqbdqHJU3LkkQYUhbYudNYMb6warXOXLbYO8qFkBYi4O7S4AsmW8ZPiBACAZBlAIHvGt7AGsiDBvb5/l59y43MXPlc/mSfW61BzJxFL2HfKZW/ctWWO3huOtt9dCIVmPyrF/tG9r2IxOPudy+WxhroFoAKQHttKvqCAVKgD+jT25I4ubmGSwWhmvaMNgDHi6zG/rFNjmXkPBju7ioyNbw6YfwgOr2rU9z3lslc7WzLKysr+IgllMB/DpmROc+S2mwPO+/uvbxUiEtO5WBn7buJMT3t63iAfeTEYXCX1bRRqLlluiLsRsfMzyt2mO0ZsPYXaTYFyyTC5fdW4cPq3jP5nUyBlBga45q5Pwbz3tvDP0BbD37TRqdZuXhOm+aDroKU/MPJOBkhbdlQYmAx3Mx0YbdGFXBxCmf9to+fBPuY0fZd6fzVa5UxRuotwH7Sg6gwQRKyND+0H1rr4wwF1p2Ua1PcCwNq2hW2oW3bzXXMQCd9BJgSB1OgGp3pNc1c1Es0faJP7qrYouvkIj2TNlzc+YmZ9TpVNU11cRxxfejhuGzmOuv6pj5xWmgj6mOxSXFWDlu0lxlDkW0JUO+Q3Mo+9kUhmM6QCJ6xqa0n2O8q5LQuvqr921lcoQlF8Vu7dVXcG4xbMFLMLcJADTGbcHYIFlxmD3HKLbVS0qMqgqRq7FmjIBPu+YnWvZdig+CwxClALSIVII1QZGIkAkFlJBO81kelMz44Bk2JsfXT09yu+jNPHJUkvGwuPG4Horzy9u36P9qp21UDwA6t+j/aqctGtr0LH+54fv8A4j1zzpuf99z/AHPw2KRwxrutmuDDmu22av5FVU50WVe36zL8VtEe5cXEW/UNZsXzH6TXB+i1Z84TxW5aMoxU+lah9pHC5cdJEpew1iR94q2JtOD09wovwJ9KzNg+X3a9ctIVJTUZiVzLoVI0OpUgkab1Hls1oJ2WnwyXrCWDfRTg7QMWRl71vqf31B8axrN4nJYiCZ1rtHLd+2SWtnTYiGHx8JJ+oqI4y2hBkGDvv9K8Y5haS2ylSiUSBrgQF/QPFcL7yxYs3C6o+DwtnMu6N3Sst1CdM1u5DayCJUggsDlfmLjWMwt+7Ya6yvadkaCQGgwGHWGEMAZ0Nbk4FftjBYdrrIiGxYlrjKq621jViBPl1rNPbZ2d4rHYzvsHh3uKyILl0m3at94ua20Nee2zqVRHzW1cHNoSQYr6WqYHuDyAO/54oxCjkfG10QJIPDl/JUnsK4gfy9bh1fxXGcjM5gjdj4onWJ8q1s2MLB53JE/Ekkj9H3fkax92Q4a7b4ncsxbIwqv37qWcZ1IRLasQgkXipOhkWrgExNak5Yvyjendj694f2VIeWySsc3ZQerkgpZWyb67m/cpBq8LlezV43DVw1Y2Rct2oPhcSBO+ka5f0o12k6DfL6ipu6a5OT8KHfKxhY18jOhBMgwBJA2B16Vz/p0CZacDft/5FvegTw2GqJ/g/wA6zn7QmHK8QDEAZrdttN2YFiWYRImRGbxEKSQKX/CR73o364j8VNMHtTvrdu4hO5S3iVbE37lpLQtMf+shLdsgAPduWsJZuYo3NQ4vSuZVBpbYG5BMbMIPXrofiPP41Pw+IsgDDwACuamTO4OTg5E4+1tl18LaMDJBWIJyzuASRGsgb0wuVbo8eX7eVlnyF3ESqqAFAGdTt4Q40JMqm+XtUU9RG3poaYfIuMy3NTAHX+aRO++npJMRvvaNbHNTuFu20e8D/W3Ow8FRz9bDVNdf6snW+wJH6jwudeK97j2reLbvXAdb1oBWByqAqXMztEAFmA1IyhGneVbfPHFsMow7PetgqrQMwJGcqcxVSZWAw6gtlj3ZCE7TsRbbFXGUyHKMOhA7u2II3HiDDXoJ2Irg4BjMrAlVaOjDw7TJGk9DB0IjeoJhuLqxa8XB+dVp/kjicWw0i5aYsqXIIJCkrGoAOoPlrPrNixmPSJ+fxjXb0iZ9KW3JHaGlxFtOtu2AqgKqhUPnCiApBDEAACI9TXxiMUwN62z5grBFPVkJYydTJ0KTIkAzMmmLkdkeqMgc65/1Vg4xjQz5o1AZR5eIgnTadN416zURibeYVzi4Ykn9/qajOI8fVZEgaa/DUaU5GCnXEAKTwDVZOE3gBJO3kdZG4H1DeR1HwWeA4tduyMPae5qdVHhB8i5hB82FSXdMgP5Rdgk6WMPFy6SN1Z9LVsn1MHowOlR6zFaeJ3VB2aTgxozP/wC1tyPE2A4kJtjCBmOg5nQe9XfGc3FjktBnb7oG3xnRR8SBVe4xiWEviriJbQZjaVw11/JSBoFMamTsRp7wrXG+ZiiG3bC2kP2ELFzsCXu/yrt5wB0EtBJpfHsSLuiT3okgLqXQQeoC5gNc2aT0WCRbI8Lr6lmaZ3UtP7Le1Jbjd98rCR+6HkcH32bdUtJswX7zt5Dc+dvBfnNvMS4nEI2Kti5h0uowtFmUKEYFcjKVKmNCwgkMwMrodUYDEhrNt8PkyEW8gPhUW8yhgFUaMqZgFiAwAMa1i+7jGaQdDBnfWNo6nxDbWD+F+7G+1D8kf8nvsTYckg6lrbSBIEZip0zKANMrKJkPZVOHxiFrYGhoYLBo00HD538V7SSmJ3bOhN9ddVoPjVkOrAgEHcEAg+hB0I+NZw7VOz/DjMVtBZMkp4SDEEiIGWBGXZegAJFaKvYgEBlIYNBVlOZWU6ggiQQehE6VQudbYYGJ9R+7r/y89KylQ8jW9itpSMBFjqFiXmTlTuHYGdDAPz00Pn+/yrht8tu4JUqYnrr9IB1nqB+NPPnPhGYFWUkdCN9PXaNhHT5CqPh+SbpYFTGuhBgj9s6Rp84qXFW3bqdUzLQnPYDRL4cGdd1P8fu9KmOW8RkOUACfeIBDRGoDASJ6nT9VMa9yVfVd0fTb3Wg/6p6aR9air3BSPeUiNf40I/j4166qzixSW0hYpvl3hIJDgnMAcoJkCQRoDoNGjTzI1BirTZ4UNFZJAhpg+InqXzDRYBMmIhdjpVuVXVT1kxrr0026frphWsdCgiSYggbsJOw0CkACCDOrR0qASb6qyjYLL04dh1G58U6sZaYC5QCdxDEKNVMtoSYMjZbPrroPKPT4En3tBGx6LXLgbcHMpOUKxhpIkjTUjQiMoCgQD/OAEkLUL1Eyf432FeFSGhRaPFxG6hgw/Rg/uq9cG4q7P+U4ZWu2bzHMFgvZvKSl21cUGQVdTrtv0ylqKRLD+Oo3rPnMnHnt4rGNYu3LavfuK/dXHt94oYg5shWRnzMCZgliPeM+0dJNJP1tO4Ne0EdoEtc0kXBsQb3AIIPAjYqkx8NyNJ52+fnit6YfnMqQLqsk6eJSAfgdj8jVo4fxlXGhFfzu5R7XMfgnA79sTYb3rGKJuow6gM5L29NihAndW2OguTu0/BXsptYkYO43/wCXxWiBtoTEj83lJ2DEsQR4V90XH9I1FKbVkfZ/fjDnN+82xczx7Tebhssq+EO+wfI/Nk3OG8qqgGcC4/Wf5NfQLpn9S2nkOpnLPC2IA6bADRfkBoPpUziryJB061B8Q5rVRpGlUEVDT04tt4cfE8U5VVs1S7NK6/wHgOCkBwZV36VVcbwfC38RbS9bS6FW4wzCYgDaPj8NB6VXuce0KJhvxqsdlnHmvcQXyFq//wDbpXk0sYsGN0uo/eqibiYXFYjDMzRbuHLJE5NGteLp4WH6+tN3h/aDhWsA3hqqgBR9oAab6fPXp51D9sfJtrFqCFAxAyrbujQ+9OVuhGp9R0rKvaNfxOEc2bwKkSAdYb1BOh2pqGn682bunPBaM4xxzDuBGjNqPEQB5a6jYgGPpSw5s4nhxcYKxIGmhBOnxHxj4etJR+cXiJPxOunl/wAqiOI8ws3U1ZRYO++q9DjayvHN/PsW3tWtA0At9oj1/joKVl+6TX5qx6k/Wpzh/BoEtv0Hl/xq7iiipW24pY1VfNTnKvB0uFs9+3ZC5PCwul7uZspFoW7bpmX3j3jW1A1kxFcmM4cc0DXrHpXgMI0xqKkl4c3Q2Xoatcdm/ZZYwhW4Qbl4J7zmVRmYlu7SAq6ZRMTIJ0mmJSg7COfw9pMNiLjd8ult7hkXFPurn++vuw2rDLBJ0pv1x/GBUCpcKg3PA8CO7uXScJNOYAYAAOI4g9/epLgO7fo/2qm7RqD4Fu36P9qpy3XZehf9jQ/f/EeuE9OP7cn+5+Gxd+HNdts1G2WrstNWgeFTQP0SW9q/h5jCYgTlXv7Dx0Nzu7tok9B+auKCftOo6is3YfERjbL9XBRv1jz8x9BW1ucuN8Pazds4rEYYW2Ui4r37asOoIGfOrqQGUr4gwWNYrBHF+IqL02mZ0t3GNp3AVmQN4C6iQpZQCwGxJ2qLUWdEWLR4OHCdsgGg3+KaPNXH0sKuaSWmFUAn4mYAGo+dU88Ta8yqLDFJzEG21zMBJIyIDOnkQRvpvUjw7i1u+2bLLKIGYTHw1jXz3r7GCbPFrDi4zToyZxJ850BJgkkgSF8qyo+q0I1XTGtE1iDp4Jw8L7Sr1ljduYO+toWlRblyxflVS0qR39zMwV7gLCSAqkaEiAyuwLn+1i2uC25MAuVbR0mTDR4TMEgqSD8QQKv2S8NYJlucPtWszZk/M2HUdAZtgjOBoWiTO+lePAeF2+HY3FXWdFtXrbuiAhWDZGOU6RDPKpMaggTBiidOwuO9xa2u/wA+KspIRkLBbbgqJ2EJKY2+fexGNukk7lUll/1rz/wKf3JbfmmPm8f1UU/2zST7CeFk4a3bUhe8uO+dgIXvXOQAAwzuoARQYYwOur94dw9bShFBAE+9qxJMszHSWYmTsOgAAAG+oWZrHkPyXKOkFQI2uj4uPpde7GvC41ezmua6auWhYeQrxumoDB3SDpGuhmCIIKkEHQggkEHQgkVOXDVcWuedP9H0/wB//IujfRzZzKkH+D/Ou3mnlDD37DXLyOGs22a1ftM35TYKS6my5aZzL7rkqx98nVqyRx7EozZld3Ysc2azatDfcG1cYMT1YopJknUxWy+GcbAXK4DKQyupB8amZ1nfUgg6EMdRSB7e+Rclw4ixbvNauB7ty4RKpqAS7CZ2aW8OULLD7TVfR2uAPVyu1JNr8O7XYHfQ76K9r6d+Zxtb8/niqZyvjo0+Ma77H9XSrNxfind6A65Y8tCSPpv5kb/Fe8Puxp8j8Nf1z+qrjwLBd9mY+IgEn+dsF9PPT4VrnAMdmVZ/WCy5sFdYnwqWO+on5n4/rqz2eM4lhlLXSp+yzXCuvoWy/hXDw7FopKupkGFZWykakxoNZ/Dy2idbm2wqHxXhoB76EE+9JIVTGYe6dYnXWKUX/wAKd9n0uJfW35LzwuLMwwgj0htZMHzk9TPximHheLIAlw7lMgB+9bUEtM/aZrjGdeu7QKlyHhb+KV0t2SLDBj3ryiK5KFWF5hmuEBACFD6HYZiatmE5Gw9hUGIu3MSw1Fq2clsZo3I/OMJEDxLM+7VZUYnEXmGFpkkG7WDMR/eOjWffc1NZTF2nu05nj+Z8gua1j72Jc28MufLoznS3b/p3DOvWNWMaAwa78Jy1h7ZDXW/LLv3fdw6x0yiTdjbUkH7qmu7iPHPCLaqEQSFtWwqW1A6bCW89QNdFkE1TOL8dYyeg+nz18th8vI1Ip8FqanWsdkb/AMuN2p/vyCzj4R5R/E8JiWp0+rH3iPgP1v4BWjjnMjZYLAIBAS2AqKB6DTKonYj41QOLcyH3kgwIWCBGogKRIyztrEhupM1vjXG3M6kGJJGjgCfMydB0gCflUemIYgiT4vidoGwDTI6bRIAmQNDTUcNJH1dOxrG8mgD323PedSo8kbr53G/jqp63xJnBzD6kDQkwYgDX5EwPUjlXDM05GJI0BBBXLvrvOkaLOnma4kw8qCNDAJgZjIY9fUxIA3BiBIqNxS3LbSGPyOmn6TSBtv6mNqkZUmynRZzZpzd8JDqQQqgaArLNcOULr3ihSWAZs+QNW+Z8IyyPLyOo66kwSRI1jSZMSDUjh+KG4At4EwQFfXOsHc7B0mMyZoOWRGUMO7/CKuZusFMFu8bKiHZp0GRbhLDVsziQD3kswjOZZPg6C64+z3tdxGBlNblrMZtPmCjfMVPvW2ZuqqZOrBogO3lvtGweOGW2+S7sbV0hWJMn820ZbgPQCHM6otZ447y2TqZhsuXKDqDJkAlcwOupgSpjwwTUL+DKk6fH4GB67ddfrVPWYfHN9oa8x86qyo8Qkpz2DpyO3ly+dFp7mvBFCdNBv5j6j9cddarlmJHT+NfID4fqmlHwztNxVoBSwuoNkujNA00VwRcUAAwubLqfCdIl+H9qdkkZ1e15nW4oO+6jP/qt0+NUMuFTRns6ju393+q1NNjcEls/ZPft7/1snbgbeddROo+XWfp1FR3GOFA6MPgf49K5eS+csPeAFu9bZvu5srj/AOWxW5ufu1bcdhsyxEH4afj/AB+yO5jhuFPErH6tII7kqL/CRbfTadtP1z/E1ZuFWhA38v4Oo1+eh6V68ZwbdRt5H4fx1r44VMbDT1j+P4jpTdjxQ1wurJhrmw2/5/T6eddNx/D+z08vL/h8KjcOdeg+ER8K98Rc6fx/Hy9KCnVSe07mT8lw73B77Slr+m2x/REsfh61nPLCROp6+ZP7abHtCcwWXFrD2yHe1cNy4R7qkKyhJ6t4iSPs5QDqYCmxD7D1H/D8dK0OGQdXFcjUrH4xU9bNlB0Hx4rxxzEsg9Nfrp+FdLjMGXy1FflwAvMaKoHzUATrO8Sfj5aV8cLvak/GrJVC39zFj7g8ObcwszGY+Z/Cao3MeDxmWVQtP3TP8bVMdqnGwiNESTC+YC/8Tv5irN7OXHWvWLi3AWhiM3ULAj4eXyFYRsYc8NumwEk+E8mYvEXACpEn7VPnk7s/t4RVfxG6FYExp4hG+2nlTCwT5SUZQSZKnSW36nqaqHPOPvbHwCYCjc17LCIo8xNz4beP+q9Om6gOaGgA6yCDIjSD112qC7WeD4fEWJvWwTEaiSD5g66HQg1N80v9jqV/ZS85p4uv5FdtMSWQwCDqFb3Y8wD5+dRIrjZLaVnTinJ9kMYECTH7KibnK9obgn5wPoIq43Na8FwM1bMqZB+0U8CqzYwSr7qgfAV8X0qdxWEioHjLwIFONcXleErj5eUG8xI3gD5f8auN7ltWExVT4LaysDTM4HfkUVDznuE04ql4jhGXSNKaXZh2hkRYxLEjQW7x1I6Zbh3I8rm/3vvVEcTwIOtVjHYSKh1NPHVMySDwPEeCl0VfLSvzxnxHA+K1ZwNveMiAASZ0AGYkk7ADeTpXniOdsGiG42Lw2QEKWF+0wzGSF8LEyYOgE6HyrHvP3NF9rFrDNcY2ZYlJ0bLkyB+rBJJVTIBM7gEUNj8K1/R7NR4fHBobZted3uPluqfGsMixKukq3EjNl000s1rT46jTbTgtRdpntHC06pgBZvqBNy7dS/lmT4UQNYYiIOfMQdRA3Kt7Tu3DF460lpsuHUZu8GGa4iXwYA7xWd7nh18PeFDm1WQDStmip75nO3TtPh8EIAa0acePvRbMbadDHXrBjfaflX1XzX7TYKmL2wmKZDKkg1feXuf+7s3EK+O4mWSAQZhgd9GG4+Q61QWsmA3QmPgfI+sajzE+Rr8sjUfGkyUrZdHBPwVj4O0wp+cH7c7lvD+Fm75QEtkDwgnViSTIJ91RHmY6Dn47zQ3cd9ig/wCfnIgAW/fYnRLJMvbtqdGulDlB8IZ7iqIblzmUWbbuFtocupt20Q5RByAqARJA8IOpkmfEarPJGNbEY78qxDSLJ75i3ugpraQfzVMED+bruTUJ2BxteO83+fBL/wBp3TxOIFraE9/81qviVpMJY4dYYIty7fW5cC6CMHYu4zEMgJJyW7tq3bEk+HISWYljnzAdrmIwlru7WIZzbwnDjaLk3Uz/APaL9soxKxlxTWTsw/J0AIKKRfu0GziLl7B4i6WS5cwfGbVvDkZTh1PDMQMLnBGYXsQe8uvMQO6UqGttKW7OOFJjMdhLZGW0RY7+YgJh7S98x6ZclouZ6ZutS29kn55qvID26jdbYw/MFs51chLtqyl28gkwDbzvkiWbKQy5T4pUDUkV64LGrctpdQ5rdxVe20EBkYSpEgHUeYrNmC57LnG4hrndYe7euG/eJILC4SbXD8MVBcM1vx4i6gLIoYpB7ovYOVe1O4hBcpatOQZxJFrwwEQWMFaV3SwiKq21e4gySfG0tUyCukabOF/iqKtwCGQZozlPvH8vf5J43GqAWuPh/aPw+5lAxloXWMZGV7YLEwFQE3H16Bt/PWuy2uwGpOgA3J8orG9OpmyugLf4/wDItB0DoZqT2gSjfJY8D9tfQrssY05cp1UzIkjcZTqCDrp6iBBFeWS0pIu4izZKultg76i48FbIAnNfKkP3Ck3FVkLhA6Zlp2gdq1lLSrgvzl57Ss954NqwzKG7u2sBb9xSYNwzZEDw3DmVaCjwKrm/ZsOZ09N/RaWtxSlaCCb+Gvrt6rz7V+zjDph3xVkraKtGQuQLrM1oBER58Sp3tyLbHTJKruFTwziptmQYj6fOrX2jc1NfKgk5ba93aWSxA+0xJ967dbxMQAPcUABFFW/s17LFshcVj0DXYDWMG2qprK3cQBMt92ydB9qW0ta41fs0TYXXkkdo1o+0891zoB+04mzRqSs29upkvYbm/D3cfDdcHK/Il7Hqt24PyayZIvOCXvfa/NWdGubk940AgyM+oVjctcr4HBkd1Z7y6Ne+vkXbgjSVXSzbP9AKSDqdIPVxTjDMZJkkanf5AbBQY0iNJgE1BcUx+XX01Gk+XnJkg9RMmpUOAumF69+b/pNJEY7idHSd+azT/wAsJh0znfYGUc/2v5eWverRxPmpzMuNN9t+h6D1gAbHSqdxLipLTqTvO/p6yfgY+YMQGP4kCTJ31MkAGCdZ2gfSCNZInls4yOuYSYmSNCvQkQIHU6eWxF7TwRUzMkLA1vJoAHuFgo+Qud2jc8zr8VLXb7trpG0zMxrOYHMSNiWEeHeRpXOKXSvvFND6SC07SuoGm+8H1J97PEQTudv6IIH06wCTvqTprRi7KlQdBsNIAzfWPLWCYkbxT4TuYDgqdj3BP0AGh0JmZGogwdhO4jYTXAMOSwGYCB5A9Op1gbaLoQG9a8ro3dYkHMplWMAmDlkMdfCRqQS8qCIPJf4uA0FCpJIhQux3AIEaSTOXrtoa9Tp1Ct3EMMNBoTIk7SIDEyDJEMNDrt5Co/FWTAVlSQfWSTpAlwN/vemqiCPvhmYqcxJj7JMg6t12InQR5HfevsFQdT1JGuh1jKJ1J8MzDAEHN0pQOllGcLGy8PyBtcoAEanxCA0xMwQABMzA9Na8TwEkFWVYjXMJ3iTrJ6eXTqBrOnEKDpoBmIBygjUGSfFEdF+IljIrmfFIDPU+ISoE6GSCBmGzAtuQNfu0aELwnW6gsTg8RZlpXEJqQpZCymRlg5hcCqQfzcoCB9YN7mGumGJVtBByofsnTMAMoVX8R7pUGQANlysyrHE2kwyqoQHRQQzQNSxMlz7xOY6s0ZYAqE4rwS3cBLIr6TBDBpOghluhk2mcoO0kBhDHVX2TjHapbcW5ReDlKOsnLkjU66KftGQF0zeI6aZiKNxXh7KTmUj4iP102cTydbXMbNy9YMkQzd5odFBJCMZkaiemms1wY7guIAhRh7yxKqvgcbDKEEW9fIkzOu0VFfTnknmyNPFJ64lT3L3NuKw8dzfuIAIy5syR0Hdvmt6dPDpr5munjlsAw9l7ZEzCgiZ6ZMqr5eWg061Auq9Dr/HnFRXs4FPNcRq0q+We2LGwA5tXPV7eVv8A+lra/OPjNSOG7ZXG+HWf5t1lH0KMfxNK/uv4/jSvtVqO6lidu0KU2tnbs8/H4pqv223I8OGQHoWuMw+YCIT8mHxqvcwdqOMvgqXW0pkEWQylp6F2d7gGvRhPWapVpTNfqgivWUkLTcNC8krqh4s55XRbaK9bG8n5fH9XqflXhaXz/wCP0/f5V695qPwqTZQ16ltD61zYY/WvsNXyUpSFoXmPir4m8EQFmdsqgfH9Q3rW3ZbyyuFwqWQJYrmuk9WPSfw9K/nryF24YnBubluxhHc/aupeYj4Zb6AfSr83tl8U0/MYDTb81iP/ADUfPf1rN02GvYbuXgabrc3GLeZNJzCWBWTHnrvHwkCom26XAS4/OAa66MNs3x9Kxbc9sfiZ0NjAR5d3ifhP/a9T6majb3tXcRJnucED6W7/AP5k0qegkcbgBeubdaO5r4ifypSASqmD5QdNaTvbPiDbvso0DD8JmqM3tNY7X8xgtevd3/8AzFUznLtVxGLcPcSypAjwLcE/HNcbWoEWETtPat70NaQr1wpS5AGpJAFWniPB+6TxbkUleXe0q/YbMtuyx6Z1uEf6txa6OYe1fE3zLLZHoquB+Nxj+NPnDJ83C3ilG6tnE79VjGat86r13nC6fsp9G/3q8f8A0mufdT6N/vVIZQStQUwMPgJWpfgl8jQ0uMLz5eUQFtH4q/8Av0Hny9M5LQ+T/wC/SHYfMeXvSMpTxsXpFRXFsPSts9pl8fZtf1X/ALyi92mXzuln+q/95SRh03d714GFe3aGkNb/APmf2Kq1e3G+YnvEFggyzGUHrE7sfuio/wDLD5D+PnV9SN6uINdvr8SnRsuo0A1yflR9K+jjm02EeQ+evn856DYCn8wXq78RYiNQQRII8vXyIMgg9R1BBPnFeWJ4pIWERMoMlc8tJJ8WZ21EwCI0gGYEeX5efIH6/vpYe1eKw8oXrfei3e/kbsW7jazbzaJeGo1tNDwdGXOp0avbjnAruGvPZuCGRiDGoMaSs9D+qqt+VnXQa6df3/L5mrJzbz9exIt94toNbt27RdVcNcyDKHuEuwLkAAlQoMDQU5FM0bpiZjj9njv+q8eIY1mUJM9BV9w3Cb+CwqXgCveLbu5xIjvlY2wbohkfIMwFoqwETc8ZQKe1xBgZgEwRrOkgrO+4mR6gb1aMX2oYxwytcQq9tLTIbVooUtgC2O7ZCkrlEPGbTelipbmzFMOpiGhrdr3KYtrni5d4Ze7xhbvWLtp8Hdyqveam3dtJPvuLd24ZAbRnzETJpnJzFbLW7aOb2KDYdXXLC2iVbEqMxHi7lba5iQi27+ILsoFVHEcwOwOZUZmEZzmLgeSkuQoHQAADyr3w3Nl1CpTKhVBbELIyQ2ZSrFlZbjM1x1YFXZjIICgR5XtJuFIia4CxHgmPhcJdvBDZNsrZZ7OGtW1fKGUC4y2br2sj4m6CLpZslzEHS0zkJZWHtcHkd5fuCyj+IFsz3bgPVLRJxFzNp4myWjoTcWqtwvnF7dzvFt2s3hyfyqhCtxLoIFu6gYhkBAuZwDDABgrDmv8AM9xixISWYs2hEkmejAabDyAFLilaNCkTMcdWhN/krnr8kYLgba4fOyi5irqpexbpmErmKmzZtkaG1ZQsdzcY606OYu2Ozh86YFCzZHUYq5lnvDCqUSCBaXxMdQzEWxsS1Y5tcz3B9lPo3+9XVd53vH7Nvz2b4/fpmohppXteRq29vO36fITcXtQa5t7A20vyv+quVzEeNmBJbNOZiS5MgksxliWIzMSZJJJma+OJGAY0Gsf0d1/1SDVHXmq55J9G+P3q/cTzXcYQQm0SAZ02+10ED4AesudaEk0zloXsQ4XnduIXknDYUFkna9i/dt20B97u3OYtsri1/OysvCcx5iWvnIzkaNqja+FUuCbZJJACsVdiICaDNmPF9ueKa1Ysi1hVs4dFS3aVLuQZQRmIa+xZzMlyZJ13Jn7bt4xhVlNvDEPvNu5tAXL/ACsRHprJqDhMXVPkqZv6x/ZAGuRgJs2/EuPaeRYXsNQwEvzxukc0cB6nn+Q/mtG8TxmaSNBGnwnTT+dpuZ01iBVV4ziY0noTuBsTIMGB9oepIjeKSFntpxYEZbB10lHJUfdB7yY9WltgCAABycQ7WMS+6WdiNFudYn/K+gHy+NXHtTLpQYU1sbizqdonU9DMiGhVGmmoJnMdJGXzwvEJjaMpB2G3XUSdCNPKBSbvc/3jrlt+Wgfb+vGv8bmfrD9oN5dltfRxPxhxXjqpvBKcy+qbK8Qi4VETI3VdTqxiSEOmmoPTzMyrYvRo89N5nYToFMxliIgHTaUZiee7zNmi2CJ2Ddd93O9e1rtCvjZbfQbOdtRu/nr6fIQe0sO5RlNlfsJx1zmBK+8QwKwAR18OktAGixpEb14niviUMGEQFOhWBsJAUny0jSN9CVsvNdyWMJLGT4Tv6CYrtTn29ljLaMag5WBGwGzgaAQJmK8bUtAXmU2WgsHil0ImIHmuuhIzEGGzA/aIkddDXEbozGZGaeugk6SFJAjQDwnQSBpSYwnajiFAASzpqDleZ857zf8AcPKvs9quI/zdjr9m516j87pqJ8Ma+dO+1xpoQusndctZQHneYLIfEBI0zJJDFW1iIVh4thyW8MpM6g7+FRMzuubKDBH4AaATSes9q+JBkJZ/quNPLS5ppI+fmAR6f9LuJ6JZWYBKi6JA1A/lYgfDpJkzQKuNedSbJ1Y0SJILMQPux1gBFBUaDxFcup1HiJH7gMWwGhIBKzDGNz73iOszqdBFwT91Kv2v4kmSlg+QK3CAJkDW6Sdh70kxqTrXxc7WsQf8nh9NvzZ9BvnzaAQNdNIghSE+1MR1Lk9FvA6xJUnZQJPQz7oGh11aVAg9axxVsrAag6AKJkkwoXTfU6QD0HlSpHahiZmLY0IAAuAAa6fymoA0AM/rryx3aTiX97Id9fzhOvSTcJiNIP7TIatiOoPFXnG8TJBDDMD1IBMbAaSRoo02EDTzq3EOBhpYER6gAjfynyqvPzfcP2U//s/vK8rnNFw9E+jf71RnyscnGRlq6L3Div7N6+TaPn+FcN7jrnov0P8AvV5f4WbyX8f30wSE8L8VILb+H0FfTAnr8YqK/wAJN5D8f30HiTeQ/H99elwXllLoIr8AqL/wq3kv0P76F4q3kv0P768zIspcCv0Cob/CjeS/Q/vr6HFm8l+h/fRmC9IUfRRRSF6iiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEIooooQiiiihCKKKKEL/9k=", + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import YouTubeVideo\n", + "\n", + "YouTubeVideo(\"W4Mcuh38wyM\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6ttDW4giJCvY" + }, + "source": [ + "Here's an example using [a model](https://huggingface.co/sd-dreambooth-library/mr-potato-head) trained on 5 photos of a popular children's toy called \"Mr Potato Head\".\n", + "\n", + "First, we load the pipeline. This will download model weights etc. from the Hub. Since this will download several gigabytes of data for a one-line demo, you are welcome to skip this cell and simply admire the example output!" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "MwT1_nk7gfpt" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a32c40a421a4cc7bc45051a11e8515f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Fetching 15 files: 0%| | 0/15 [00:00" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prompt = \"an abstract oil painting of sks mr potato head by picasso\"\n", + "image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]\n", + "image" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EzIWYp5k0ngI" + }, + "source": [ + "**Exercise:** Try it yourself with different prompts. The `sks` token represents a unique identifier for the novel concept in this case - what happens if you leave that out? You can also experiment with changing the number of sampling steps (how low can you go?) and the `guidance_scale`, which determines how much the model will try to match the prompt." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s09TpWIAglM9" + }, + "source": [ + "There's a lot going on in that magical pipeline! By the end of the course you'll know how it all works. For now, let's take a look at how we can train a diffusion model from scratch." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3TWKkNlfsATE" + }, + "source": [ + "## MVP (Minimum Viable Pipeline)\n", + "\n", + "The core API of 🤗 Diffusers is divided into three main components:\n", + "1. **Pipelines**: high-level classes designed to rapidly generate samples from popular trained diffusion models in a user-friendly fashion.\n", + "2. **Models**: popular architectures for training new diffusion models, *e.g.* [UNet](https://arxiv.org/abs/1505.04597).\n", + "3. **Schedulers**: various techniques for generating images from noise during *inference* as well as to generate noisy images for *training*.\n", + "\n", + "Pipelines are great for end-users, but if you're here for this course we assume you want to know what is going on under the hood! So, over the rest of this notebook we're going to build our own pipeline capable of generating small butterfly pictures. Here's the final result in action:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145, + "referenced_widgets": [ + "4a99584eb73440e5be79572549490704", + "23d6333cec9f4ae8a89aaf3dd2be3fa6", + "ddbe46751fbc48bbb5385ebfeaf62ac6", + "4517c381c26d43cd8d03fb27b1a26774", + "295fb8ff81a742e29db36e10c7f0c9df", + "40dedef6535d437591ee8e41c51473e3", + "e670878b67b5487ba0648b417f0c6801", + "1943d545cd5a4b2a80fbe75c2bb0faba", + "8d4c6bb0c2f24a898f38f51aba4c7b82", + "72c1e8031d5d44229bf6d1c989f628fa", + "77a61fe86ad04d448019ce8b6e7e48bd", + "d7510d76ac20458ca4df34eaec865372", + "b2e83fc209494d47b966e0abf071dcc5", + "68f358d320194bd1a7e8ce64e26f7bb5", + "9dacbfae20c54687976d30129253b0eb", + "42a7d07aaa6e4a50a9a7efb2de9cbf57", + "9424e1b1c56941aa8a7b3077015f72b8", + "e54b6068e48d4b76bffabefe0d974ecc", + "5ecb9b67a77f418c8cbc5245941298c6", + "9cc9689be42246c48698067ddc6fa5ef", + "2caa903e553c49d1b361b9265a1910bf", + "6d70ce5841594677b6cf568ebe893636" + ] + }, + "id": "SJEiaGNbKI6T", + "outputId": "5bd30a67-9117-44ee-fbb4-338580cab3a8" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "78edc967972b47f498ae47e1b0a25f5f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Fetching 4 files: 0%| | 0/4 [00:00" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from diffusers import DDPMPipeline\n", + "\n", + "# Load the butterfly pipeline\n", + "butterfly_pipeline = DDPMPipeline.from_pretrained(\n", + " \"johnowhitaker/ddpm-butterflies-32px\"\n", + ").to(device)\n", + "\n", + "# Create 8 images\n", + "images = butterfly_pipeline(batch_size=8).images\n", + "\n", + "# View the result\n", + "make_grid(images)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a9_OpC7EKd7W" + }, + "source": [ + "Not as impressive as the DreamBooth example perhaps, but then we're training from scratch with ~0.0001% of the data used to train Stable Diffusion. Speaking of training, recall from the introduction to this unit that training a diffusion model looks something like this:\n", + "\n", + "\n", + "1. Load in some images from the training data\n", + "2. Add noise, in different amounts. \n", + "3. Feed the noisy versions of the inputs into the model\n", + "4. Evaluate how well the model does at denoising these inputs\n", + "5. Use this information to update the model weights, and repeat\n", + "\n", + "We'll explore these steps one by one in the next few sections until we have a complete training loop working, and then we'll explore how to sample from the trained model and how to package everything up into a pipeline for easy sharing. Let's begin with the data..." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QOvw1ej7suWg" + }, + "source": [ + "## Step 2: Download a training dataset\n", + "\n", + "For this example, we'll use a dataset of images from the Hugging Face Hub. Specifically, [this collection of 1000 butterfly pictures](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset). This is a very small dataset, so we've also included commented out lines for a few larger options. If you'd prefer to use your own collection of images, you can also use the commented-out code example to load in pictures from a folder instead." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-yX-MZhSsxwp", + "outputId": "f8efea0d-41e6-4674-c09f-d905d6cd05dc" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using custom data configuration huggan--smithsonian_butterflies_subset-7665b1021a37404c\n", + "Found cached dataset parquet (/home/lewis_huggingface_co/.cache/huggingface/datasets/huggan___parquet/huggan--smithsonian_butterflies_subset-7665b1021a37404c/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n" + ] + } + ], + "source": [ + "import torchvision\n", + "from datasets import load_dataset\n", + "from torchvision import transforms\n", + "\n", + "dataset = load_dataset(\"huggan/smithsonian_butterflies_subset\", split=\"train\")\n", + "\n", + "# Or load images from a local folder\n", + "# dataset = load_dataset(\"imagefolder\", data_dir=\"path/to/folder\")\n", + "\n", + "# We'll train on 32-pixel square images, but you can try larger sizes too\n", + "image_size = 32\n", + "# You can lower your batch size if you're running out of GPU memory\n", + "batch_size = 64\n", + "\n", + "# Define data augmentations\n", + "preprocess = transforms.Compose(\n", + " [\n", + " transforms.Resize((image_size, image_size)), # Resize\n", + " transforms.RandomHorizontalFlip(), # Randomly flip (data augmentation)\n", + " transforms.ToTensor(), # Convert to tensor (0, 1)\n", + " transforms.Normalize([0.5], [0.5]), # Map to (-1, 1)\n", + " ]\n", + ")\n", + "\n", + "\n", + "def transform(examples):\n", + " images = [preprocess(image.convert(\"RGB\")) for image in examples[\"image\"]]\n", + " return {\"images\": images}\n", + "\n", + "\n", + "dataset.set_transform(transform)\n", + "\n", + "# Create a dataloader from the dataset to serve up the transformed images in batches\n", + "train_dataloader = torch.utils.data.DataLoader(\n", + " dataset, batch_size=batch_size, shuffle=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-T5nDp9XN4FR" + }, + "source": [ + "We can grab a batch of images and view some of them like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 98 + }, + "id": "IEjN9CJpcrxd", + "outputId": "d4e57420-d4a5-4162-a5c9-42106209631e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X shape: torch.Size([8, 3, 32, 32])\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_4278/3975082613.py:3: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.\n", + " show_images(xb).resize((8 * 64, 64), resample=Image.NEAREST)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAABACAIAAADj3VjoAABTWUlEQVR4nO3dZ7yd11km/P/u5fQqHfXebVnu3Y7tOD1xEiAhIfQSXmDIDLwzlGEGmIEhAwwwBAIJ6c2ppDlxXGLHvVdZsqze69HpZ/e93w9rP0dHsiQrQOY3v9fn+nB0JO29nrXW0+5y3dfNDGYwgxnMYAYzmMEMZjCDGcxgBjOYwQxmMIMZzGAGM/j/I2LT/zIxPoEnHrl/z+4dWLRkOdau34DOzm7EYrHTjPEjQ7VaxZ5dO/DwD+7E8089ikajhje9/d247ua3hg83Gg3s27MDT9x3B+YsWIzzL7ka2VzL/8mZT0elUsG2zc898/C96Onrx3Vv/DFkc/mpj935rS/he9/8GpatPv91t7wLCxYsQjwRP/sharUqxsfG0N7R6f/UmZo6Stj8gHK5jL/+8z/G8888iPkLV+HdP/Uza9ZdjGQy+SOaT5jGwQN78PUvfwZ33XkbOttb8Vu/9xdrz1v/8smfMv//G1Ct1kRX/qM/uAPPPvUoYmJ48zt/Elff+Ibw4emTr9drOH5wN47s3Y5GLIGuWfP65y5CMpX+P7iOM2L65o8MHRMtOdfShkw2Gz/rBRyusUql0tLyo7qv6/U6jh3ah+2bnsaxQ4fQO3sAV772bc3JjwzjxS3PIpnKYc3q85DNZH9EEztHlCsV7N6/G/fcdxde3PTcO976Y7jmqhunPnbSrXjvXd/Fhz74X48NDqKjvR0XXnwRbnn3z+HiK65FKp35kU69wdjICO6945u44xu34sDevRgaHkEikcDk2MT0b5VLRdz5tc/i6QfvQDyRwJ6b34Sb3/EL7Z09P9JpvxyFyUk8cf938P1vfHZ48Bha2rowf8nKUz786X/8W+zevhWPPfTA448+it/4j/8Za8+/wFmfm5MTE7jv3u/jksuuxKzZs531NdBo1FEpV5DO/Fue0NHRETz52P04fnQPXtz0IrpaDh8/+m5cce3bkPk3PWh4CG7d8jy+/50P44F778P2rUcwb6ADTzz2yPQXwP+FCKsYHxu7547v4LavfAaH92xFqVRGtR7D8WNHzjTCgW3P4u4vfhhHDuxDrRFHV0//hmtvxtrLb0ZLezf8CKyEer2BYqGAwtgQ4vE4Wto709ncab/y0Pe+hmq1gmyuFbMXrliwbDXa2tud7jIOu1EsFn9EL4ByqbDl2cexY/OzqFWriCfSOLRn+/RPPv30g9iy+Wls2rgJC5eswzt/7D2YP3/Baef/r0etXkcifhrTcHh0GA8+eD/++Su34rlnnkIiZvzooVM+/Aqm5QxmMIMZzOD/rzjJqHzsgXtQGB9tSUOiUcTzTz6CPdtfwM1vey/e/p5fRGdX97/5bIL5sH/f7s9/7EN4+pG7UZosIKGKrtYkxNMYGzk+/buHD+zDnm0voLszi1K5hn2b78CT99QvufH9aG3v/Def9stRLpXw2L3/jOM7v4HSxGB/TwalShkvPPngKV/Z9tJWNGpVpNLxB+75Po4fH8Qf/On/wvkbLhR5P6egrb0Dr3/TWzE6MiTyCVpaW880w2NHj+D44DGsXL3ulZZTxKED+0Wu8cC8BWf6cPB76rUyhkYKaMsncen5+Wce/RwmJkp43ZvejWQqdfZDnyO2vbQJX7/1L7BuWRlLFrTi4cf2Ib0oiWKpeKavT0yMY/tLL2JseKSzuxNz5i9CR2eXyIx9Ocrlcvivf2VcK1z5B/bvx62f/Ic7vvUVxOplZDJppJJxNKp17Nu57TQj1CrY/OhdOLx3J6q1mig8ODnWUC+iXBpHophGJtuCWOxfawWGyVfKZQwe2o2ND9yGfds3Q6OBWfMWXnTD2zF78ZpTvj42PIhkMoXSxDiGDu/f89LzWHPxdZi3eCmSyRNXfltb69TPf1sUJsbw1AN3Hty9Q3TeG2GB1QLiatM/Pzh4ACFm/tKLm/DYI0/g4YcewK/9xn/A1Vdf7wx37r8A4TI+dvwY5g3Mm/5fRweP4pvf+Bo++4l/wr59+xBLJrFoXt/unbtPGW3GA5jBDGYwg1cpTjJbjh0+gGQylkul0dGWRqMRw7HBIXzmox/Ctm3b8Kv//ncxd/6if5MIV0gBbdn0PP7xr/70+aceRiYF7bkE2loyKFRgolDF+Pjo9BF2b9uE0aFBrFjcgpVLk9i6bRg7n7v78LEk3v6+X0PmDOHIfz1qtRoeuf8e3PX1T2B+XwxXXZSv1hJ4/Nkidry48ZQvzp07G4cOHMTqVUsmnt6MLRufw4c++If49//5T7F63TpnsCZSqRQ6u3owNHQcuXzey6zXMMNioYR5CxafaSEhSbDtxc343Cc/go1PPYpcrgW3vPunz7wDdVSqNRQKFczuzaKnO1UtjeNzn/xbdPf04fKrb/avM0KPHT2IT3zkgxg6shHXXrwas/rzIn9leLggCkyfFp//+D/iW1/8NGqVQjaTQf/8Jbj+dW/GDa97M3r7T82sHBscHBkexqpVq/yLor1hu7a99CK+/OmP4MihfStWrcbBfbsQa1QgGcfkyITIqD8F1XIZY8ePIJOOI5fMoHtgPpZdcPnSC65GJp9FuVwQhd3zLR2Ix/+F9mm1WisWJ1AtTyCZbqA8cRSjR/cglYhh78iBemkEr3nPb58yQj7bionxEVFQOxGLjR3Zgyfu/hrGLr4Wy9deiGzuR5VcHRsZwpP33obDe7YnEknEUlnUKkWUCpPonjVn+rfK1TrKFRgfr6BSqeGlTS/gT/7o9/Gf//B/4OqrrzuTH/lD4dDB/aLsyBRGRkfxne98Gx/58Idx+PBhEWsgxBUmi5XVK5eAp6a+OOMBzGAGM5jBqxQneQBjYyNIJxrZdAK1ekNkP/Z1pxDinI/ccxtGBo/g//mtP1i4dCUy2ax/USQ0cD2ff+ox/N1f/BGO7n3h6gtaUanA9r0FHB0uob09j872FCYLJ9lBu17ahAV9ZXTlG3j0qRjCWrZsHjty72fQP28pXvP6t/m3iH5OR6Bw7NmxHV/6xIcwfOQIYtVOlErZTKqOtUti2Hrw6Clf7+qfj0MHD2PH1p3lYhmJWAzPPv4I/ucf/S7+/e/9Ec67YIMz7HZwDnK5HMrlErKRuxNmODY6gp6+PuTz+ZePgGq18sD378D//os/xdYtW9Hb1YpkIok7vv31M+1DIK1Wq3WR+5hKx3H48OhDj+/F/LltePrhT6GrZxZWrdlwptHOjsmJ8du++g8Y6DyIxx86jkeeOIDWloTIjxmfLDtrvuHR++7CcAhGx+qFYgHHh5/GxuefwV3f/Rbe9dO/gCuvvRH5llYMzJ4dbOfR0VF0dHSc++QHjx3F/r17cPs/fw5r1y3DO9/z47VGDI/c/yC+8YVPTY1fr9XR2XGa9Fu1UsTkxBiC9drR04Nr3vJuzF2xohIyIIEyGkugODmCSnESHd0DIuLcKQhXURhzuusZHIixkcF6vYRUOodsSxfOv/4tSCZiOLRzCwoTk8f278Sh3ZtOGb9vYADDGw8hnm9DIplKVEtolCex/dmHMT4yhFUbrkRHZyfi8X9t7CHcEUcP7sWzD96FkWOHNe+72NSGxBNJ1OtVLFp1/vQRHn3gPjz39HOoVsqIq2OiUMHePfvw5x/8E/T09K5Zsw6lUkl08/5QD8xypYyjg4cxN0rCFQqTeOihB3Drpz+O40ePoFQ+8XhMxGM4cmRo7dpTD3fS3yvlMLNEKhVHpVJFJlPDay7txvnL49i6ZxzfuOcJ/OUf/Yd3/fxvYumq87Fw0aJzWVVhfAyJVAabn3sSn/jbP0Gq/BJ++30t82alsetwC777QAI79k6aCl8Uq6jVT7qfD+7bi5Hh8NIqYdvOSdELJp3Qlixi94Mfxf5VazBv8alczH8NRkeG8dz3P4Yee1FKVrF/3xFs21Y/b2UHKm051Bqn3mmr1q7DM489hFl9cwJ9e3h0AosXzMGmpx/HB//Lf8Kv/vbv4fKrrjkTmTKTyaJQKCAbOc2TkxNoiDnzo398fAzf/srnPv+xD2PHzn2Y1deBWX3d2L3vMMZGR0/7ddFDqiWfREwD6VQMxVJl3pxWrF7ehU/fej+27W7gd/7rX6G/f+BMY74c4Uq48/avfOSjn8KF53Xi2itno1yuINmWQCIRQ3dnBhq1M42mURfZCrVaLDwkQwBt7YaL0D9rFh665zt44enH8bZ3/TQWLlne39eHwcFBFItFZLNnDFOEJ06IGv3g+3dj1+YncNEl52PJ6vOQSGUDQfPqG27Anp3bcfd3vxW+j87evpePXJgYwfjo0NS/rLroWsxesgFi1aoa4rEEYo0Tps/o8UOolkvomb0I8UQibG8w/saa77ZOSCRQrVRw/PAulCZH2noGEIuduKQ7B5bh4jf/LJ654/PY9fyT4Vtjxw+fMvMl6y7Bzk3PiR5V6Ww2RKRizadwEscO7MKzhQmsuOBq9PT1l4pFtLadJtT58p0P8cDwDmuaa9u34PlHfoBapYR0rqX5v9US6iFWVi4jkUxh9sJl04cdGytgcHAMxWIF5WpNFAycqNSw5cUt+Ju/+os/+bM/x8T4OA7u34uVa85D97kRao4eH0RMHKlkCrVabevWl/CVL3xWRPyt1okS1+l0WCw0ao3jx46fMuZMCGgGM5jBDF6lOMlUb29rQ3U0PjJeQToFV63txPnLU5jdW8WC2XEsHcjiC9/b8Y3P/R3e+6u/L6od6+nrdYYAS7AsSqUKDu3cga987IOYndmCN93Yitm99fAS6+uoYMWiFuw/UsLRoSLa8hn0zjrptdmoV9CRg2dfHEFHLo6bLotjfnfh4GACvb2HsP2RT6Oj57fR1t6FUqk4Ned0+pyqJYNBEY/HQ13iCw/fhnmJp9FxXgJd+QoK5STufd6mHWNYuyyFlvyp4YhLr34Nvvb5z2Do+FCpWhVZ0MEzi9Wr2P7i8/jgH/xH/Obv/fF1N74W2eypfsB0Myf8rFWrxUIRXd2nmhthITu2vojPfezDuO/O74yPjU9NoFGvY2xsQuR3z503xxlQr9Vw/PgkJgsV5HNprF7R3dGewV337UY2DX1tB/G1L34cP/fLv+2cC8Q2PvcUnnroi9dc1o3HnjqCN/36Bsydncfml0ZQb8DgUBGFwhlpoKEkO+RjG41GKHW86obX4u3v/Sm0tORQmpzAC888hU9++C9w81veddnV16OzswMjIyNTS3h5QrhWqx07ehSHDx3C3u0vYPV5q7Bs7XrEklnEYvGw4aHK6eLLr8DTD92LYmES8+eehoNbLkxArYpZC5di0bqLUCoVoJKOxdOo1WKiCrDggodb8tCezTSVAXoHllRCNCOeQCqVFgXQQv752MHtOL5/C7Ktnc3hAmOyaW3GkWnpxIpLb8LooX1HDx9GcXzklJl39Q+gd94iDB45hHi5HHyyePLEbRLywxOjQ3jxqfuxbP2VzQ/EoL39bKzQcrk8MTGJrq5OHNyzA88/dj8qxQk0aiUkkmloNMqFAhqxJMrlKjq7u9HR3Tt92L6+PlG0vFipikixYU7B267XY3jsoQe+8PnP4v3v/zXRHfroI/fjoouvQF9fPxr1eijizU67ERoaOHzoAPp6+6f+/cjRI9/8xtfx1BNPoFSJT00m7Em4pJPxOKq1ejxx6mNnxgOYwQxmMINXKU7yAMLbr1xrWnm9XRnMH8iht7OEVHwc6UQFqxeV8Nvvid/91D7c9oUPoe2Xfw+5fA4trW0vP16I2R09egi3f/Fvcd7srbh8XQrtLRNoxFKF8RYkYmnMnx3H4rl5TBYnUChVkUifFMXOZPM4sLeGQqmGy5fHsX52Efdtqo1OVPDsjgbmzrsXx0qz8Jaf/GURD7VaLTkHDyAYTVu3bMLipSuee+IRPP+DL6I4dAjVyQkkknG86YIkXrc+vutoAoViHbPm9J4y5tr1F2LJipXYuWVTiPEVGyWMTRREWZ3WXBz7dm3HX/7R74Y02LU33iyqGAoI5mcwmkLsdXxsrK2tzcmh0mKxgO99++v49Ef+Fvt27cKc3o7e7jnYumOvqOJmdHQcGjHMnndG/mgqncKsWV3Yt/fA1D4kE7FMOoGhkSJ+5l0r0NGew19+5FNYseZi3HDj686++SPDQ/i7//2/UC/s+bWfXYWDh8cxPlFGJt2KhjrqjQbaWjMi0++0WLhkObZtegb1er23rxfX3HAjWkMxXYxIqebCK64WUUK/960vFgsTuPamN4oypUGoYLpbFnzEwWPHwmX27OMPoLevA6svuAiNRGpqtgmNEPVuiGNg3kJ09vRh3+5d6Oqf/fIl1KsVZNJJzF64BO2z+lGrJVGtJuONGMSC2xqS8zm0d/eiMH4cB3e8gHxrVyobWBgVpNJpUUz5+KG9OLLrBcRTGbT1zgm/nKSnFIuh0YijrWc+OgYWHz54CMNHDpwy8xBbD+IoR/ftRC0eq1dKiOVbEYsHLmOFZhHo5Ngwdmx8dMm6KzA+PolcLotU6vQJyGq1FnIzx48exvOPPYDyNGZwiK2HW6ZWrcYScSTTaVRrFfTNWyg6xVOYNz/8YwL5TFok0lCtx7F86SKsWrsWmza98LlPfwbnn7ce1173GkwWJvDAA/fg8iuuQUtLPtA05s1deGLytSpGRo9i+eJlmCxM4v77f/Ddb38bfbPn4pprr8bR/bvwzLMbsWPPfpEjkkkn58w51Xec8QBmMIMZzOBVipPeZl09fdi5pdqSgQtXt2DNkhiyqcCgSCEuEHISyGWSN19cQ+q5Pbjz65/EO3/mA0inMyLzIaBRr48MHcdDd3wRc3ObccUqiKezKFaDYZJKZZKIp2tYmmvg4NFWbNs1jlKjhsWLl0yffEdXLw7E4li7rBMPbR7G7n017Dne2HusiGJ5HG3ZUfT0fwIdfXNw/c1vE2UCGo3G2St6xpu8iG4c2Lvn1n/6G2x+9llMFEsiK7sjn8ZEMYmRUixEwAvlBmrxU52MIK2x4eLLsH3zxnqtKgq+h5+9Xe1ozWcxfuAI9uza8bcf/GNRdHLDxZc6hYIVOCcjw8hkstNF30aGj+NTH/kQvvjpj6NeLkK9jsGRsXypjGQijnwug9GRMXR0tOGKa64D/+3lm1Nv1HHk6CgmixXEGoGPa+nCLG6+dh7isQb+x4eextYdo/j6lz+JCzZc1N19qnsUraaBe+++DY898gMcPjqyZEEOb3/9Ipy/pgtdHSlR9iKISgb/oFA8Yw5g2ep1uPf2ryFWMzB3HgbmL0QyFTbtRC6kEYth4fKVeGtb+13f/pbojF9+7U1OkK8yItt/6PhxtHd0PPnoQzh2aDve8PYfE6l1apqfyTDnYLKF9fb092PJijUiqlv/7NN4ANEWQbUWQ2EyEA3TiMcbsXjcVGVQvSGyeTMtXegZWISDW5/G/u0b56+6BLVqDalcSqS8cmDbExAiBPOXIdva5SRd1RM5hvBHMtuClZe/NqjaDR7af9qZB7HSXK4N1Vq5EWuIXKJ4LIVYPCHKCtTrMDJ4dP/2ZzF32XqRh9rd3eF0CZhqtRoImiHuPzk2hmTQtWwkEY/nadJkG4r18CioVEUGfn/wek8eecGiJchlUyJpxYBLL96A9/zMT4u4yOsvvPDjH/0Y/uZv/hoLFy3G8mWrRHzLB+67B2tXr501cOr5nRgfQ6waQzaXw8YXnsMXPn9rpQY//pPvQm93B3KXX4a5i1bgox/9KErlIhYvmffmN78Vf/2hj02NPOMBzGAGM5jBqxQneQB9A3Mhnqg3QiS9gUSijOm03HIlj0SsBo1qKlbGNWvH8e1HHsbjD56P17zuFnT39YleyJOTk889+RAqh+7GZRcMIxUrQq2CRDqFeq2WSk4iEctApYaejhi6OhIYmaihu+8kIaTWjnasXRrH0tmTeGpjAR2JBq5bnvhuIYbdkzUcG6tisnIQX/3khzFn7kIsXLYK5XIpcwY578COaBZb5fP44sf+ZtNzT2Jk4kQ8sSefwmtWJlGulvHSvtpP3hxDf38KBxrtp4wctmj+4qWoVir9Pb0oTk5iYGAWWnJp7Ni+C52tGYyMl3dufwn/8Ff/E7/zxx/EkmXLpmYYSniCMFx3T9OsPn7sKD78V/8D3/7alzE5MY7WXBrtbXnUxULANDVRxPHjIyhVKjh/1XlYe/4ZS7dy2TzmzunBrl17kcoEubR4qJRpzSfwpW/vwq6947hofQ8uX1fAw/ff9ca3vsvpjLgjhw9i54u345ffuxh//uHnbr9nPwb6g/kWKNjQ1hos31D0kHI6rtQUZg/MFdFdaop9s2aJ4r8RqeMEtSMWS6Guit5Zs258wxvwzS9/WSQ1uHj5atGlMjw0hM6uLgwdP/7AXd/E5Vddhky+xZRhG0/SNODr0S/hkMGlW7H2PDz+4H2iVMQpSGZyyOTz6F+wAolkDvFE2MZEcz+bI09fThwtnf3oHliKg3t3tvcdQTrXLsp4Hdh5ooCrf+Fq5Dt6adaURQNHHsZJ/RViiCfTYSGN+umrMZqdAFJJTIwdb4bgs0RNDoJ7FM5GsNzLxclDe3YiZCz65y1HviWPXPaEhx3sa/XGlo1P4tihg4gHl64WvKIGAmkx9BppVCuV4jgqpYIo23Ha1ODcuQsRT2ZQrU+gJd+C62+8UdT8Y3R4GN1dnbe84534zKc+g4/+49/j9/7zf8Wa1etEKopPP/PYjbPeOLWH4azt3rMDPb19OHLkCL765a9h+7btt7zjbejv7xOVqqUzOaxatw7Lli7FwYN7cPMb3nhd1ENiCifTQNs7kEmnF87J4LyVrWjNDoWNgUZ16hTWQsIqlggecTY+iatW1vCNx76BdRdehlxLXkSzO3xw/6ZHv4XrFo8gkyiIbtHgCAeNk3i8TgliDaTisHggiVWLWjE8XsC8hSflIQ/sO4CNT43i0XgJhTIk4g1ctaSaiafwmUfqGCvWRITF7Vu34jP/8Jf4zT/4c+Ra20L86uU9Q4qTBRElLrRwue+Ob4UkbTIeQ1sujZtWZ/GODTXc+UJzhMc2x9BxIIbeZWWnQ8jTtmRTnZ3tOLD/sKiesL+3Ex3trTg2NILWXGqyXMVTjz2IL37qo/jl3/x/0dvbiz27touy8fF4fGjwGP7uL/8U3/n6l0UVLr2d7WhvySGZTiGRTB45Moi21hz6Z/UiMzIpUgFq7+w67fxFRcijE3FMTJZE6ij1ej1o1PR0p9HemsJN18zGb/z8Gtz/2CC+e/9nL7/qRtHlPn3z77n7Dtz9/cfwx7+9Gn/4W+u//8AhkW5VqD4LcYMmGS4OY+MVNF5WfDeF3lkDoiKgUr22ePkqpFInroGIUFsz9SqIJVCP1UOHkEuvuBRf/ew/4ud/43dF5NpQqNnZ2YmnH3+ov68dC5YtR4jJRJ1Pwt0eD7+FtGfsxFPa+ksuwzOPPoS2UJN1MrItHQhcz2P7tmP+6ksgkRaecfUw+IngTyMIWzbqU4du75uLowf3HtixEXOWXIDi6DEcP7wbsxYsQUvn7KmvTCE2LZww/dUdjpjKtQZW6JEDe057CpLZLNpmzcbgsT2pZAapRDiJYfMromK+ijjiyXS1MIFDO19ErqVTRIXIpLtFz5ZyqYzBIwf27twmenzFQ1l4WHugUjTrBCtIpaTTSVQrMbR196G18zSRyXnzFmLRonkYHDyO2bN60dGRx9HDB1AtV3Ds8MEVK5biuuuvxQ/u/h7WrlmNd73nZ3D++Rdg396d27ZuQU9Xv4jBsX/Pbqw770LcfdeduPuOO3HJpRdfeMF6HN63Gy0dnaLHWq1axoYLVuHo4X2INWIvV3yaCQHNYAYzmMGrFCd5AMtWrkFHW75QKGGy2EAj2Y14YhLx2jioolGLoVpLBhMpFk+ir72Mufnd2PHis+jrmy2iG27fsrG9thn97SXEEimUGznEhWRLHdQjG6I2NcliCY4MFkWEyJaTdVdy2QSWDTTw+OYSQh41k4xj+9HkQEcC16xM49GdRQyPF1EoFfDUow/hu1/9NN7+vveH4Mn0QFDQUQiOYoj5fPtLn8TI8FA6EUNXWw7nL2rH6oEadg/HMdGcRnHP4SJWZePo7z2DaEwshkqtvnXrTtTqNWTTKaw7by2GBo+gMDmBY8VyPptBXQwP3nUbZg3MwZvf+S5882tfwBVXvwazBuZ+/O//Gvfc/i0kNETZ3ZZcVhSLSKWTaGttOXL4GML4hw4ewYp1G3DhpZc7q+xlSDXPmz8bsUchKIskk8lw5aRSCbzn7YuRTlQxNFrD5/95G0ZGYw8/+AO8+W0/NjVm6Fvwta/ciiefPYg77+vET7x5zpUX9WKyOLV5zcR1oJwG0mpIDF6w4YIzzTk4SW1tHaiVCq3t4exMBWNEIY3pUZQ6YmKNWBwrz7sAB/btw/e/+01cfv3r8OjD94mMuz3bX7jwkktMMSNCwKdZTpicGn768aZ+D+qPS1etxaw5p6nCC/bphhveimQmL/IwghsRa0ROTCyOWGy6HxCWWUMynUVHb//ul7agUk9AZRLxWBlt3dP0UBv16ODBjpwe9jmB8OFkKpvNt6Cj8/SyB0F1J3QNq5Qr4WrMNHVPA4E1Pm2LwqriwaQN0jKH9rwk8oRaW/PIZFIoFSexZ/uWQPoM6foQtImFtQfVh0Zd9NCo1yrlYhHlyQlUS8WpzTl121vbMX/+PLzw/Iu48OKL0T97LtLTOi509PTt3bEVGzasFwkQff7TH8PyFatxyWVXYM7AvMcffwDLl67Gjl1b0dnbie3bt+KLt34JLW1tuOKKK/bt2Y1Fy5ahte3EUyWELhctGUW9cTfq9frLb9sZD2AGM5jBDF6lOMkDWBo8gO5Z2fo+9LQTVUjX65OIKTs5NBlXrlYzqNUzSCQqWDmnjPsfvwu5tm4E9ueRPRuX9Y6LbJNSJYVkooRU4oTyAY2QWQp2Smhq2tEax9L5GZTSi7Bi9XnTJx+SnI22kNWpob+lgV+6toGB9kK9CufPSWPFrDxufTyOY6MFkdzC3d/5Z6xat+H8S68RMVkDN3R0ZFTUG+tbX/gnHNi3F7G47rY8bljbgbdcmER3YgjxRglr+mMYHPHEnioW9GYwu//0HkBo6d7a1tbZ0YrdO/dgslDExudCMuGEoFV7PjVaqCAW6o8K4yJN+RAmHjx6CLt2bMWm55753je/QjPfnsukTCXuYjAwu0dkgm15aUc4E729XSjuL2PugsXOUN83HSFXFhrBlysNDA6VUChWchno6cwgmYxjeKSAj/z9s9i6cxjdHdkH77sN19/4OrS2tuHJxx/C0JFtKFeq+NxXd2DN8varL+1DNfiKsTiq1QaOHCugUm0gmW5Fb98Z2ZMhbxFyAP3zFi5eudbJ6mbTLadG03KHer3SFLzLZHD1a27APd+7HXd99xt4/MF7MHp0L+bP6evrmyW6zuuxkP5NTx3g9CZ0iHfHYcW69eg9nWpeqOJcdelNmAxN2RopkckvVq8HgubLvjg9dh+8gfauziAZcP/3b8Pcuf246KL1onLLqYQvYc+DQ3Dq2GG0sKqJ4WNjQ4Pomr3otIsMZnLw3sqTo7FGHeVsHvFkkIWIjka8mSxpclsDa3Z06ChGhw6L2ocFP2Do6CEMHj4YcoyxZE50QmPRsUXU2ODW1CrlcnFCNPuQrj+tmmwul8fFl12NH9zzIOYvWopcS7uokm5yYhRHDh+eLBRQnhzChg0bcMftt+Pv/vdf40//5zx0dLQP7tqK2z7/CSxcfx76Zg3g1s98Avv37sM1116F0WPHUtksdu/chd7+WWGEqTPV3duPro5OzJ+/eMYDmMEMZjCDGTRxMg101gBWXXD5wU23ob2jHYlkkAArIR48gGD81ALrsRFrlKGWRbnWgvb2NMaeeQFf+tSHRESu3tz4RZdnUauHsPgkUk2aaQyxRDMp34ilUKsn0KiWRT1R87ksrrvpLZg1+yQaaN+85fj6F2IolBLI5pN4aFscS/qz2WRMJIe7rLeBt1+Qx/e3JLH32CQGjx7Dt7706fnLVmNiYgKDRw6LavEfvPvbePKRB0WNf+d0Za9amceFC+KYKCYw3ug2pXsx2kA5HmtrrePhl9Loufj0jJQ58xeitavzyKFDKFXrU9uVa2sVcQz27d6DQrkaKvsLpTKKtQYSEyV88yufpWnhhNnuemlzCIYGVl+oaWrNnBBtnpgsoLO7B9l0anx8HDt37hVVt4f/esXWpsHKuPb6G/Dxf/oICsUQyU0EceZIi6KOUgW27hpDf08OP/MTyyr1vbjv3ruwdu16PPPUD/BL71uMW79WwzMbB7Fj78SVlw4gmZpGQWla1gmkM0nccOPNmD//RG39KQhB/0VLVqDRKIdeyo1mjPsES+dkdiPEEumgQhik+oJ82/nnr8aXv/xNHB4ew9btW3HRBSvCYMH2j8WDkFlgGYVfm+NP/6Npq8ZiWLPufPT0ntGVCRTViItZQT0wHWOxWDOSPn0hjallRpmAKlKZXIh314JHVWugpXs2Qn1WZNrHEG/UG027Mj61XZGheSI30N47sOGmt6O1I5C7fue0889lW5DKZBv16tQ4iURc1GcijJZocltjlXCO4jGRE3/04G6R2HK4VuuVAkqFQmg7HNioYbR4WHuz33JMpKVMrOl4JdLonT0P6dNRw8N5OX/9RRgY6MeRQ/uwd1cH0ukU4okMunv6QoFhOK1B9i7o5z/19HP49Cf+CVddc9Xgjm1IHhjEFW98Pb53+w/w0ANPYtGiRTh//XrMW7gwTCDUG4Z8UlCSOHhgH/bv2YP+WZ04b/1JnQwCTnoBhJ6Cr3/bu24f3YREchwy/cilwmsgL6IZ1UsJNCqVcMoDXytWiWFoModqrYxaeQSJVBKj44XByRx6O8ZFjlutnkSjFh4rCaHtcvhupYpSOYVKNYGO7hW46Lo3iOJIU1ixdj0WL1mCwqEXcP3KOlYPVNCRraXjDSTiIbgEy2fFsbgzjs88lsamA5N45qknHrjzW6gnchgbHcba8y7A7V//AkbGRrGkN4t3X9p2+bIqMqkxJ0RdYihVoau1eWP8IPji7bNx0eXXvfxkYPbc+eF/H7jz26LL8eix49i+ez927juCkbFJoet3LI66BBqlqkgN5ujhQ1i3dgkOHT6KyVJlbLIsalvRkk2J7pC2tjxa29qwY8fOcMTwXAjyrsNjE+jq7nHW9O90bLjwIvzJn/1PVIfvQjqTrNXLovdNeAbd9+hRDI2U8Vu/shY3XNnz1x/bjv/2h7+HFStWoFYZw2U/nsIffOA8fPDvN+Gu+w+94cZF6OkKHP+4iO65bs0C/PzPLsNP/+KvO2tDmHDlBzmmPTtfDK+ok2mOJ14DEabClUnU1VGrldDW3oGe3h60D5VxfKyEkaHhYBMk4xmIlab2M3rKh0sk1gzLNMMUCVE0srOzT1SvcHrE4kil8mhUq4jHwpO93uSwNmd9YiHNF0AgWYbP1BtBxqfeSKIRz6JajUGtRJT+Da+u2BS/NnniH6fnsMMOpzNLzrsaYbvOhFx7JxqNWJAdrVbqSGRO3FONZqf7ybDYMPlErCESzDmwZxs2b9qEfC6PhQvmI5NKBaJ2rTwJlRhi9Yqo30CwSJqnoFZXr6FeqaGjZ8BZu2bOn78Ia9efj/vuvgt79+zBnHkLRInloeGRQrEi4unPmz8fl11zHTK5Ftz5ndtRKI4cKjTw0rEj6L3/YXzv23dg5crFuPq6q1AujOOZh78/OT6K8fECGvGE6A135Ogx7NyxE+ddcB7mzT+JNx8wEwKawQxmMINXKU7zNl64dMWNP/YBNIYeRCK7A43qLlQmCqjV8zRjPvVKplquoVzNoFjN48hwHoVKAtVGAqViDfFG7thYBxbPjiFZCV5eDbFUTdRNTSIZy+SRbG1Bd/dFqKXXoyt/PXqm6eRNoW/2HFx6/RtQ3bgLVy8fRiI06Gk0aY6hLiaYMMlYFRcsSiIRa8HnHo/jhYMT3/ryZxFv7RVxubZufBoH9+3HslmteO+lHbh4aTyVnOLDiQcjt1ZHrhpInAlctizW09+K43PehHlLlp32fATi6c+8/wOhtdMj99+LbC4jqoEMWvN9qQRSyURoPxRKnyaLJZE1lEw0MDY+hlJxHO3ZeLmSFmUFq/EExsoNxEYKaO9sTI1fCmoy0cih5nnJ8h+igVqwqd/y1rfj3rti+OjnPvVjb5qDWT1JjI2P4/Gnj+In3roYN1/bj8mJ0u5944jXinjh2YeQTmexd9883HTtAH7t51biY7fu2rp9HP2XdqBUyeDg8T60zLoSv/W7lyCXf4XEdcClV1+HWXNmxV5m60VmcpBmClWE1fAvIZhWr0wglI8WxkdFxOie7k5Rp7BKtRIYh4FYqWl4Bhb1SVVUgRUa8rr51i60d/SYYoueDTFRzEE1gXp9AtVaKSROwwjNw4WsZ9Nmj4lCtbFktX9gFlKZFFo625FqMhpPhK2ihGz85OrfExVt8WmVbqlkNvYy/auXo62zCy253PjYKGrlEuqVMgIxZGLkuCgmmWrpCJ0bmsGZWByJShGr165AqCaL1+vI51sbpUkUxkdExYnhKs23dUzNNiT309nWgcVrMXvRSix+pZaloevqqrUX4Hu3fRebN27Ec08/K0rg1+uN0cmyqI98kHoNBZtz587BRDWOu+95pFQOJYQFfPZTt2JyvIiB2f146PbvIBOfQFdvW6hfqxYrGB0voFIJwdUq2rJJXLjhwrADL5/5jAcwgxnMYAavUpzGoIjH4yvOvwLV8gU4suNOjG3fitbaEaTqw4gng0Gdj2dakcnlkdCNpYlu7B6r4tHndyEEv85ftWDt2m60tycRK5VRK9VRmRwXvfAT8VotlsDxShypBfOx9MqfRHvr6atIROHsa17/djxQPIivbLwX7fERzG6r9LQ00JINgiQJDI/XUJFGviuNt15SR2zjxLZDI0hUE6g1hnG4OI7Z3W24YU0r2joy2DyUzOe6kE/XkMtUUayWMDxaxWAhhYlY++zV1+KSm97pZarip2Bg3oIP/MH/wH/7Tx/A7i3PicyxR554CX2dOaxbMbcmholCGSExNjQ2gYlSFdv3DSMXq6JcKLamExjo7RWZIaGzwkipho1b94pS7vF4vLenW5ReXr7uAixftfYscz4FTfGGu76Lv/8ff4jRWv2WNyxFLZ5DNp/BL/7Ueuw/cBS5bAyHDlYL43V0t8ewdU8R89vTOHqsKrJZQi7n3besXr9uDurxwBeM49av3Y99R57Er/+7D+DSK651DtmLQIJIZ9ITk6OigHi9VkEtiNGH2HfzZ5RBDVZzZRTx2olOAKFp2nD5AOrtgU+RCYnMEIyOxxtQL6Gp0zDFrqzFUK8VUA6R65Z2xNOv6AE0tx+NRolmp7xkItXUmZjWJK6ZFg5+QDN5m0QylQ8to5fM70dXVxey+TbEEkEeIxyl6QdMp1SGGH29WcCVEjnQZ0nATEcgid74U795YOcWHN2/B0cP7UMsnUespQvpIJuaygS3uFgOTlgRtXIV6bYW5FvaMH7sOAqjY2F745lO5FtP7GQj8BoScfQMLMaS1ecFEdZQsveKV074wOWXX4F71i3Hnl17RU3oQrlZrd4I3nkQnggd3vcfOIgDB48ik86jtSVRqgQvqo5Dhw4jlcjixec2oT0XRqth96GRoMlWKIertI72XAq1BlG17AUXXuwMPZNnPIAZzGAGM3iV4vQGRTAQDuzahNLWf0RP/AVkc5NIxoqo14N8WyFISoUXTr0eF5miycByCzG1VBzZeDHeGEOlOIxU4JwlA8exArUaqhXlKnQ0jqKw75N48JslXHXLf3LWkG5HVzdueNe/x+Znrsa2p+/Fxu0PZA4eRF9LHfPaoCWfx9Ex2D5cwdFCEplUKohu1+IN1KtVUaV4YI/tGYF4uo4lvZX2RANpJUyOl7B/OIaD4zm0LHwNVl/xliWrN4gqrV4RL23aiI1PPirqDrpj7wGR8RV4C+PFWqgXmyhU0NPbjclKDa2hFUHo6JRLohBPZ5KxqeXM6+9GqEx5addhCHKSmcDTrYeI6uz58/Gen3+/iAZ6jtix7UX8zz/97xjesweZ3u54YwSNamg8UEMmVcO+A0U09GLWrNz6tW148vkhFEshgpzA5RcFkc4sCqURjI8X0oki6tUyQivawuQIdj/3LP72g8P483/4LAaC2O2ZEey4js6ewBccHz1sinBSLTnZcA4hfvHmKalnuyFZQbJ8bGq0WlCuHxnB+NhoM1AeuFtNlmdGZJ3FpoQOptnppclRDB/dha5ZS5BMnlHWtIl4oFMHefog5BtvRIs0Za1PqwOMNT8WbuN4KtOC/t529M2ejUQQlXu5FdloRB5RmHM4WgKNegmhzUQy2Xku/LEwfu/cxfmObhw7dhTJTIvIk8jHEiJ/pRFLBE5ztanfkMLQyFEkJsexcHEe45MFtLV2hKKtUGsWNc0+kUILvKMDO19ErVHv6LkR6XPjvAUsmL8YF19xLbZu/axIoyVUIzYaytWGKdJRLS56SMbjWRFVsiVbbcTqyGbTqJbjKNbyGIulMDIWOoTXkE3WMska6tUaWnMp5PNZBMrf0pXnYcWq9Wea84wHMIMZzGAGr1Kc3gMYPHoYD3zzw7hm8Q6kWkLZV0LUD6BejaFSSVfrDdQbw2jUx1Ep1NHfuxJrV6SxbfdBzJ7VNzm2H+3VowjKq7WQIo/lRNVeqVw9mcggW2sgW45hy6bbcP/3luGmt/20M4S0atUqXnjyEXzj8/+EndteQsrEj1/Xg96OLHYeLCJfq2NODyzKFpAZzaDUiE3KYlILRsfH0dHaimUDaSzsqGBRTxFtLcljpQR2H0mgEc9jslTHo5uP48hD38C6lw69472/gDUXXu6VcgCFyckvffpjovd8S2sLNI4hmzpBSE/EE4HlnYo3cHxwEL2debS3pJEJjlQ2icJ4MZ/PIBGqZipVjAc5vEIRimWsvXgtdu4+fMt7fwFXveYmrFgVpBHOyRoKPXv//m/+DMPD+7F9qIZLFmhtCeSTQOUuiWrlZvUmkUwUMDk+vO/gBLq62tAxUhJZ/fsPHMaKpTG0ZOsYGq7VqgVT1T2xOIrFCew5XsSex5/Dd7/1ZfzMz/96InlOMfSgq14vjYoiyyGAHuQLo/qAIAgR9QuIxaYmEFSI58zuxngtjcNHjmDe/DnxZglYXES/qU8znOMndvgEoyaMXC6MYWLkMDq657/CAhpVolxFIhLFm9ZjoIlpofzIJwh8tkampQONTBcy+XYnfBQ0eS0naD/Bhwi5hMa0cRpQrRVRrZRSpxNTOy2q5dKT3/8W9m15AS2d3aLyo2atXCyGaqUYTOzmpONxZIP4eayCRCyGlvZ2VKr1eiFUnsaRSgY2lBMbFYN6rYQdzz8a1EEuuOI6Z+4zfApCfcbb3vFePProE3j8sSfRkES1EYs3CyEDUytUtKWQy2XQ2pJEf2e2eGgMi5csQL1UwO6DE5iYrKNSC5mwGqpioWlKsQ7FyRoq8RrWX3QpfuXf/RbaT9bNnI7TLKxWq9397S+iNvIsWvIVURFEox6f2v1AYxJPRMmlJMr1DOqJrEix5NDQMdTrB9A/Z7HUOKqxY0iEEpVQWxhPEfWpiNXCnRBPxpBJprBwDtx931dx0dWvR8/J0i7hctz0zBP47N//BY4c2iu6YtpaMxOVTrTUMyiVx7DjYB17jof6wBa0tHWiq7uxb2wchw6OYnB4FPW2JGJzZqEihk2HUxgfm5goFDGrI4bl87IoZmMY6Mlhz9FRPP/4Q3u3vYif+8Dv48ob33imU4ID+/Y8/+Rj6O/vxvLlC7Bn3wFMjNcxPlHA6NhYd0ca5WqoRItjycIBlCo1NCbLaG/JYCw/WSqVpv4aMlGh0CwIp0xMFrF33xE0qqXQEGbl6nXO8K49E4Lb/tzTT2Hl4lbs2D2IZYvbc5kGRscKyKTqOHxsEksXZlAplXH3g0OLV12HFcsX4cP/+Am8+6d+BQ8/8FlceF4BvV0pbNtdiAlVNmX0dOcw0J8VpcGvuHQNDuzfjz17di9esvQV518plydHD4vymaEWNHREiuqbTlBCRU/z8GSsNSqidiUdbVmkk6Mi6kFbaz68sEMD96Dg1BwnduKVEBdrTCsEC4+nEIEcGz2Olo4zVgIHhFq/qAFMA416fXpxWTP72yznOlEPHGW2a0Eiv6d/QNTMI3rNxaY+1sTUa2Xaa8C0GrpG9L5POdcXwKG923ZtewmJZj/OWFgCGqF9SLMzVblaq0GINsdjCPWe7W0tKE9OIp9JotB81UbxokZd9BqIn7QDYQfLmx+7F7PnzsX8pavOceYYHh7C/r17RC3mK83XcT0wWRPJFJbM7cfyZUsxMKsLgXq79cXnB8dfQq2exbJlc3D51Yuwd+9BHD58HDt37sTxwcFCqYJyJZAUqhgZLyC5+SUigaMzYyYENIMZzGAGr1KcxgM4cmj/0w/ehlsurSGZqIj8yNAIvlYNlkuTsxbextVqSM4QcacapSJm97dj4bw+VIpDsVyQLkiiXEsjlyqJnN9Gs9leOhZ0+0Iuq1FCSzaHdH0Iw8ePeZkHUCoUcN/tX6dZsB7awl2/LokNi+PVRgVDI0WsWdDATRenkM60oFTL4/ndCby0aXxO/2yM1kYxPDqGC89fg5HhY1g60IYrV6WRT+WLhQnsP1zA4eMNpJMNrByIIZnsxPO7CsFa+dYXP4XFK9ed5ayMjw6Vi5M4criEl7bvw9DwmIhiGMTuxwulg4eHkG/JIB/PoaezHaOFMqpS6O7KoVpv7N93VGTEhQ4NwbkJ4aDgEzTVS9Tv/u638IZbftzJzbnOgnBJ7Nu7CweOjmDz1iHExTB/IJ9Mhoxu0CSoIRmroa8rg937q9iyt+03/uMH8NTjD4iE/tecfyUOH9qHjVuewCUX5NCai5XLFZE2Z1jC/IH81O+h1u8n3v0+UdHNK2JyYjTEWxKxEwnb6aGTKHASisUazWRveYKmUR0aHmQzcczp7xAZodlMLOoCZmrMcOUHFZd6szlXIrKgp9VbNeqoBG2o2onCw1PQaLoL5ak9EUlyNqb1AGiWa5ketTH1e6NeC6ZhJp0RWazBADe9Qi6KKU2PDYZf6/UT2fJm8KBRm/IizjR50SW0d9uWaqVGsy1XrVJCI3lizEbT74hFW3TCownhjkppEiOFUcxbvAKFw0eizl/TqvnqgW5bptluPvB96w3VShW7tzyLuYtXOGc/OAiIjY0VEBQ1MpkkMmJXX3M1zt+wAR0dHWjUqmhtb8ULL2zEwLylvXuGMTRUQMu6HlFfsNBKbHJ8QpRePnzk6BOPPYFHH30UpWIVyVQCu3bvw6bNG7F8xRk9mBkPYAYzmMEMXqU4jQdwaP/+40cOQj28+Wsiaz0YFaGrc5TtiZfKadTqMcSSgWLVhrZsJ9JtXTgyXIV6oVQqQ0cesUoFhXIa+XTQBAXxRDwemo6FqGVQOIohVi3i6IG9WHqyET06fBzH92wXldjEGjVMTiaw53CjUBjEhSvqGOhPoB7L4tBQFj94bhJbDpQxf/as7jn9ODJWRHs2jQsuXIvC4d14ccdBkeL8ay/Mze/LoLujgDmDBTy5JYGethTm9mcwUU5UUx0ojhzBnpdOtNh+OUbHRkIFVktLJ+KTQTUMgsEbrJh8NhVk/Vtb8khn81PnJd8+C229LWiJjSA7We/qDrqtFRw6OoKQFA1KD6Hhwez+LqSSqU1btuKlzS/gimuuP8tspxBk6L/+pU9h3fIMvv9gVTT1aqUeUvQho1Yo1NHVmUKlEsM37zqCG97w/yxbuQ73f/9bIs5cUFe/5V3vx+f/8bewfEkdc/rzk5NhozKi+qNq9YTcaTzVLoplt7WfMRU2HeNjI6VyWSQ924zO14NtfsLeDNHVWCwWVVLVp/Yz2NyhccLseDtq1b1IJpNRFjoYsyeCzolpadV6vRb0UZr22bSmxJVag7Nm45tqbk351an5O2F4T7P3Y9MSAhpTyyQe5pbJ5ESE12bnsmmdyiOtuqk+w7ETI09LOMeaUfv69C7nZ5x+0LMcHkllQofqpIjjG74W6vIErYtEKrgX9Wlnp6OrF8EpT2Yq6Ozpx8TY+PjYuCk521gStWD7x+Ii279RqyOTb6tUqzh2+CBqlTLip1MDfTlaWloxMGcAu3buEbUlWHfe+Vdfey0SyQQKExMiiu3zzz6P++59EL/2737jnvufwsTkCNasvxCf/sSnRAGSdeedJ5Ionjd3bt8b+0QX3mOPPIyQ6mtryYukf8+CGQ9gBjOYwQxepTgdvSkWSyViyKarNEu8gklSD3K7daI4fq0e6UrFiVhANRXUK8cwsOxyHBtpIFvfHmyTaj2BdJNcVRWFtEIdWTxRDoZAIllFrBFDNlUREapOIbMFFAsFDI6M4ejR41gyK4m1i5OY293Ye7CCrrYYBkfzeGF3Es/unkBbPoOr17Qg0ZpLpY9jwfwBlBopDAz0oJI+hlmtndi+bxTffrR4/sI41i1Mo7OthL6OBlLZNPYcDQpQ8cHhIWSTKVE11pkQj6dC4HXtmuXYu/+AiLFwfHhEFESuVKshKNzZ0Y7O9jxmzVuMeMcc9A8sQHloH44P3tPV2Y6J0SFRsDj4E9lsHqPDI3joseewdMHcarWCseHjZ5nnKQjMuYsuvxFDB59Af3cOh44VsXXnxPBIER1tCREbtb0liUefGkS+awNe+4Z3Bl5ZuTSJ3u4udHZ0iPqsXnXTL+DZzR/CupWZZCKBTDqOUqmKvQeKmDenD294w2vR1fVDlLCNj0+WS8HBQtOmjp1Ea5lmyTbqwUVOBHGCINtQLyOVzqGrZRYOHDiIeKTH0PQqwsjT9N2msgtNwf3QE/ukQH1odXBGuy2yv+umwv3TSs9OOVBjWovjyGYPv8dDJVcQfkikcqhWS0hMW3sUjp86xImhI43raWSjRi1q8X02ozM8Tdq7+wcHj0FoaVApivY2lm5FLJVGOtXkO9VLJZEjm2ttRSLTjvZEEi35FrS2tY+Njol8ykiaIkNTFLo2OQr1KuKJRCBqB2bnORKgA/r6+0X+X3ATr7n+NbjymmtCK+/QPC4kcu64/Q48+NDjWL50HlauWNnVuxB1PVi5dDX6envwrW/eJrpPN1y0IawleCo/9hPvxMDsXnz9q/8sOpVz557UNOXlOM0LIN/SGmjXldA5JN6CetAVCRTUeMifJAjRlqTI767FsqKrMJFKo3feCkw+9izy+dZ6BUrlBvItKZo1ltNviUYzBaVaDnLkSQyNJFCqp9F1upZ45WoFhVD7morjitVJzO2t46Hnqy/tq+GJbQm0tTQwODGJFXPzmN8dh1wCscx4qmcl1i+9EtXkg+ibvxrFykbU0nl0ZsrYfST+5LZR7D0U8l9JDI2VsGBOHdddkMLcXv90+xjGKg0ED/dMWHPeBWvPW4+nn34B8+fPxutuvBzf+M69KBRLKFdqVXFRe8VAfVt63hUo1+tYsHglypOz8NIzDwa//niljsliBZVSUdRkMYg7tQX+XLXc5KTHf4hLPzyY1l9wIf7yg2UMj53QXNy5b2Ln3nFcuK5DRCMeHK5j064s3vf+X0VrW2d4wgZX+sKLL0JXT5/oPrz0ypvwuee+i4nJPZ2dgXoPew+M45Enj2JweAJbtu3DV7/0Bbz5be8Ir6izI5FIjE8U0dWapdmsPKoBnpaHbFQglmg+HZq9CU88D7P5DsRb+tHW2Y90tr35qJziT0Qh1tDwsHGCkj9dGqiOoBCZyue8UhEJQj/FetDZjUWUjZeltJtmVDPuFP4W2Ki1RCKDRmMCyUQWlWrIjjZM7/My/eHYOPFHeFiH2zlijb8CH9G00foGBnZsfoaII97MjceRSMYRTzW3qzmfWg3ZfB4tbd3ISYv4zd39PTg+eDSKkTaQyeVEp6AyWUM9HketWkYjngjyqPnWNlEa/BzR2tIm6gYROgutv2ADyuVSGGfL5hfx+ONP4MUXt01t0UUXXYCuru7AwG5phZ6eHlx80YV46pnn8d3b7xSJCF108Ya58+eLrqLLrrgSjz70MNLpOObNe4WSkZkQ0AxmMIMZvEpxGlOivbOzHm/Fjv1jWDwQbMwU4skq6pU64rEqao1ErFFBtZ5BLJUTNQ7rmbcBLe0DKNcryPcsrx/ZZsqfEBe985tVNYkG6rVYvEkgq6OmgeHxBkYKOVGe5xQEuywZbyCdT+Hbj47jgU1ZbFicXDk3g2ojiWVzMti2v4wlnTXEg75QWwJynXMv+kkUdw0il82hd9EGHDj+NBJjLyJWTmPJ/PbQq6g3N4GdB0uigNLwWB2fu7uC1mwjtC3MZoJDejaF+q6u7hvf/A785X9/Cr2TRRw7dtxUQ8dGA4lEMiTtQlfO9u5+rLnoamzb/Aw6OruQGZiDnv6BiZ3bELQGC8UyyuUqEoG0umQugsD67Fl9L2zZiVTqXIt3RC2wb//O19GSraAUUtahZ/dY9cVto7hgTQcOHi7iB4+O4LqbfxXLV10QxgmXxEWX34DLrm0V9cMKCBKPy8+/GQ/f979ek0uhrSWNzVvHMDRWF3FbP/GJT+DBBx/AZVdctWDholdcRUdn997d21CsNpCLT+Ncxk/kY5tNyuu1cO2GmElUNpwUlWvFc53It/Ugme9oTGOLNovLahWabSxjUcJ5eswhXF2FEuQ7M84akQgjVEuTiKXyNG/xRqMRph2vT+dNntjt2LSEcCxqG5Buqu1nUK6caJI+3Zg/0SYzdsL7if4l/Agh48ZJkaKzort/TiqbR61cED1VQqFvMHWnonDJVFoUbMi1tqF3zgIc2bcbMTkRBeDIwX0jY0VMjI2cNG1NwdTm7JrF3k26a1t3L5GDeW4IHTXOP389nnzoMdz//TvD0PsOHMTO3XsR6DCpVAad7VlceeU1SCYTjVroKnEwzA6XXnoFvva1r+HAoeN44vGnsGfHtkVLFmP+/HkiKkFIWa9atw7dr6TfNeMBzGAGM5jBqxSn8QDa2jqSuXYMjxxCvZ5ErFEUvTYjy72ZCw6l1eKdiKXbkUgvxJxl14uyKKODw0ivvbRRXIp46DjqEEISL7CvmjHWWMRGa36sgWq1gWxrtyjBcgqCVmVHRzd2bjuKarWOrnwJs9tjL+yu43WXZHD/8xNY1JNGXBGleB2dXT3ILf2p7jlrkdj7MLItrci1diEz+ypMTO5GKVlHtlFZOLcHL20fx9Xr8rjzqXGsW5DG958bx8ObKplsGvN7OtA356yxuVjs9W97Jx665w488cA9KExOYs3Kxdi0ZQfy2VS1XMT4eBmrLrlZ1Blt9/ZNovh1d+8sLF974fbNzyAEuAOCPxGKv1avWIw9+w/h6Wc3988ZwJx5r5BEmo7QmXpkZAxLFnSgWKrgwJEyxgvVh58axqzeNPq6s3jrLbdg5SW3iCqGprB2/RVnOdZFl74GsfG747F92L5rFM9sHsPgcHHq0PPn5LBoVgH33n3nT//8L73iKjq7usNMgsZqJpk0xe+cJqUZUK/X4tPSJCFaHUoL8x0DojxqX18/Wjq6C8N7RXTVpr5QkLcMPdDjqeb40+zoag1qjTjaX4nJGsZMZdpQm1bx1BA/icM6zRZvnGSSxxCLpzX7dVdFSjjZTF7U6DuiscaF4rVp0f/pvzWXFqrSKsVG/sRBz47W9o7WfA6j9TqS6RxCM7XmkyG0O05lwobnWlvQ2t6Fnt7Z2LflWdGnM9k8unr6QillYWJM9CirVSuoVRuiLmPh0RdPJMtjw2hp6zrHOU8h7PMVV1yDb3/1q3jisccwWarVGg1MFEtoa21FR3sW5523BqvXnhcGCKSM4IuHrPjy5Suxds0aDA4+iFK9igOHjw4eH8S2lzZjfGxClG55/Rveglyu5eyznfEAZjCDGczgVYrTeADpTCbf3ov9RzbhwMEU5vTHRVLa8diJ5H48Vq1UY2hkWtFI9qBr/nXIdcyd+tjl11yBBYtXljsbGN83gUplBKn4COL1E/qF8XgzQFerxXBoMIvt+yCe6xbVp5yC4AGsuPBybH3pRfR2t+HQ8Di+8uDke6/Pi8zDchna0w0U4q3I9naidfEb0b/0qmZIt1ZFS+sJNcRZiy/E7rFdyCaeRnH/vnw2i0S2E0NjR3DR8hS+9uAEjo2W0d6WGxkrY+Hai9HZ23/2E9PT04uf+ZV/h2effFzkKvV2t6O7sxN93a2VYgFrL389LrjiJlGdy5r1lyKdyU3NfNn6a4pf+gIq5SPIpFOifgBBeXzf/sMYHhpHPRZ/3VvegSXLfog+wC0tLfiPv/tf8Cu/sA279+9CJptDQ+LZl8o4cPQAli9fjj/5s3cikz1Nt9Kzo62jGwOLb/6Hv/sgjg9P4PktgeeXQktLXqSZ0d53Hi678upzGTmdSeeyeQwPDaMl14N8aPvcOKGn1tQm0wih/MDrDdZfvr0byXRe9OlwvtrauoJu68iRbaJEQBT3D4zPSBhuGuloslRFIpFF/pUMunC4dLYNEyOHEM+EuqdEZPaHiH9j6sPRQk4glcrFmxqiphYVrqVGcZoQXtiMxglVmBOTaP5+YtR6vT4VWH9FJNOZcIOMjO8SJSBDa+tAzgnWerxeD9GIVCKBvtlzkW/J4eDBQ8i3VUSVaP1z5h08sG9q1fXQmLepJXeiNCwI+dUbsVDvGvqL/AuwdPkKvO6tb8VnP/FxJGv1YrEicrhbW7JYvGAO3vTmt6CtrR3FYjHXFA7JIJVMidhEN930WpHM4vFAfEpngxNfmCyIWhoEwYmrr7/hXOY54wHMYAYzmMGrFKfxAFKp1MVXXIMvf+Q+3P9cHa+7NI3WlhhasiHSFEMiXk3E85DtQ27WJehfco2IFxFw+XXvRCwWK/Z04FBxJ0rHBhGrH0YyUUUiMhnCdyvVOHYciuPRzRX8+K+8VkRLOAXB8r36pjfi8XvvQLUwKKL9JOOVgZ4Ebnu0iGWz21Co1DCS7cKaxdegZ/FrTQV8Iw2mvv4TqnOhYdacla/Dse1l7N89OCsVx5yeNJ7cXMQbLkkihPwK1RTac4nErAHc+JZ3OucWqesvvgxvfMe7cNutnxTZbm1trSiXa8vXXoB3vO+XRTzogLaOrlOGmrNo+YYrb8aePZ9EZ2eIdcZx+cXnYcuWHZgolnHZVde89cd/SqTrd44IluCO7dswPHQIq5Z14aUdw0hnMt1dfWjNxfDOd/86unoXnfv4JyOGzoErBouL8czGh5Fr70NjZD8KxSJ274df+rXrsWLlOYr6xgbmLsD9934Pnd2dyKYTIt3gpuHciOQHmqT6KjKZFFo650x9LKC7v5nySSTTqBSOojB2DHVpU5JwjVr4PYRxQ6vbQqmOJUvnO+fTEU/mnKCy1BBXb0xrY9As+2pSgU4sKh0KrDKZ6cVuU5QzkXcV1NOm7PvYSVmQaZmAsEWNOFrbOmPxc/UAYvH4guXrsGvHDtTrJyrImu0Tmk36ipmQn8vlMWvO/Kk5pzJ5J1fb5FraB+bMx76du6PlRgofzU1LT41fKZfmLlqCvoFXar1wBqTTabzrPT8t0vj7yhe/UDwyjHwuhwVzZ2PturW46urrpmbeiOz9IPsYHmvNnsNXXoOLLvk+Nm98BhMThWPD44in4rjokgvxm7/1O+jsPCff5TQvgFgsdsPr34rnHn8Qz71wl0jUcOX8OFLJUOjYgEopm++F9gF0LbwayWz7y8cMv2TyneicdxlGC1uQKO5GKjYk8oCr1fjoRBZD4wls3AmL1l2FK298/dnXs3jZCtx8y7vw5U98COVSDUNit95bQrECq/pL2DeZR+/S5eha9AakT45FLF+9bvrkp9Da3oPqvNcgsW3Xrt1bMC89irFKBrc9MoHDQyWUKilMVlI/+6sfwJIVa86+hOnIZLP42ff/OrZtfAJbNj6Hcq2OtvaOt/7Ur4oSv2dHIpm86W0/hscfvAuDQyNobWnByNAIxsYnMXvhEvzyb/y//bNOU213dmx6YSP+8R/+DgNz5mEoWcDe/WMYGz6+u17DX/35n+HG197sh6yxfDn6+mf91//yX/GXv//ruOvpHaIs9II5OSxe0IGvffkLuPSyK0NJziti7oJFWLx0JYaGRpBNd6M1GwIjQW+nJoTX6mXEldDWvQiJVP60w4rKUNt6V6BWHkExEDxjaRGVWaNWqzUwPFZFb/8c9LxSzHA6Qlgp3zELhclB1OrleCLLyTzNUPzVIKozz2RbwtfDszvfEv56gicaj6dQb/Imm6/Apuh8bOpHNI1Qj1atIdF+ToKyU+idMw9t7Z0iCd5mdWroMNnsA1PNZNKYs3CpqBI4YMPlV4vSv9GexPoH5iCXS6NUOkGFCA/96ePXKsXQuOnsBZuviM6OTvzcz/8K2jo6vvj5L4g60lx25eV481vejvb2zhPfaTQCezWb7XTyy7Wrqxu//Ku/jls/+3E8/PBDnRK49vpr8Eu/9KuYP3/xuc9wJgQ0gxnMYAavUpy+pjwUEL3xx34af/jIg/j2I6MYGsnj6gva0NVWgrpU90Lk5l6LbNfysx8v2BGt/WtQHroMjcPboLYfk5MxjBczDz8Hm/dWUGtdgV/9xQ+gte1U3+IUBEf1hje/Ey9t2YznHr4L82blHt8xgo5cHS925TCe6sSlF96Cts7TGLx9s89mBbf3zMfsFa+97aFnMJwYxYFjk9hxsIAVC9qw/3gN173hnVe85mY/ZHetgDnzFuBnf+N38N//468jWxzDa9749kuuvNY529ED85fgoqtfi49/+H+LZBRrpQIS6Sze9M73YtmqNT+Ubb5/31585Uu34gP/4bcxf8FC/PF/+X1s2f7PSBqdu3Ax1l189bnP+eyIxWIhTb34wutw/I5H0NeSRDbfj/MveSOWLF2BL37hs6Gwft78BWcfNsQAL7z0Kjx8353Ys3s/lixdgGzyRHhEoxGCPy0dXci2B9bsKywttFxv7VuH8v6NIj5uCNpUK6WxQgM9ffOwYOESL+PIngsSyRyyuS6US+NCA77GierLEBNqit6k8yLXYeqXtvYuJ5+poOpRr6VRaxSjD4edOFExF9yjWL2EdDrrhz/dmVweK8+/AI/cewdq9WmSFbEG4rFUV08/5i1ccsoh5i8+Teu3TK4F7Z2dOHro4NTUmyKsjbqIJNrT09E/74ewo8+ObDaHd7/rfdde8xqUSgXMmTNfpHcyHfF4PFBdOzt7RBseEBa4dOly/Npv/idce8OzLfk8Vq1Z65w4AqdixgOYwQxmMINXKc6mKnXehovx/v/wB/jO1z6Le5/bioPDKczuTGHh/N61865B95wbRJUsr3zUVBYt867H9t1PY2L/UezePYonXyofn8hh/VW34O3v/UXRS/4c0dbRife9/9/jyzF4/rF74sk4xot1PH8whtf/+Jswb+l6TjDXzh1NeuWaS5dc/Gbc8/VP4MjRSSRTSRwbruG6G9+Gd7zvl36ohOrJCFTa1+D3/+xvcOzQflx10xuz56BuNoWQULrhTe/And/5Ovbu3IFiPYZ3ve9nccuPv3vqk+eOf/jbv8aFl1yGFStXo1qtYuWqNfinT74DL7744sUXX4olS09jnf3LEYvhDW++BXfddRfOP28tbnrdm0TSjBdsuBgPPnDfPXffhZ9493vOZeCwtxdddjXuvf0bOHDgEObM7kEmFYN6KZ7KorVnFSdJe77y+C09yHYswtCRHdAoY6wY7+5bgHkLlphGSfiXIZlqQTKViyrCAoIHEBfVc50Wsdip/5VIxEQ1So1SHfVGpdloS0gJgFpoTZVFrqV36og/LJasvQClWg1PP/gDlEO740QC7e3ZZWvOdwZWyMsRtNgWr1iNwwf2iRyv0KqvMjmB1tYsrnjtW9M/vDV9diSTyQULFr3yJBPJbEseHdk40qdhi8TQ2dmFa86tUcdZMOMBzGAGM5jBqxQnvZYbJyk5NRHCxMePHcXXb/0UnnrobmRa2rBmzap3/vSvoLvvh+ZLhcNt3fQUbv3o/8LG55/DrLmL3voTP4drb3qjiAlzxgVM1ZycbvIYOnYEt3/9i4/ceycmh4/j+je/A7f81C+K6rz+NRgbHcGXP/53+MG3voxYNofXvPEdeOdP/RJaO05TxD89anmm+f+bI1g93/rSp/DNWz+BeSs24AO/81/Q3XNOjXMDpuZ/x3dvwzXXvUZkOE8/1g/rT/wLEHbvwP79Iu5KqEoLCuwhp1WpVO783u0YHxvBu97zvlO+fhZMjI9hy6ZncfzIPnR3BlG/1lnz16CjO7B0fmg7Nxx6cmIctUoRqUw2m2v1SnHzV7zyf9QIivb1ei3WzC5URG5xPB5k9MN5P80qfqgrPzyCtj73BB5/4HtIZzNYf+m1y9dd6ofMq4UWAs88+D28uPEZFCbGMXvufFx98y3o6p979lP5o9v8er3+xa98A0uXLMKlF58Tb+2Hwr9J+m0GM5jBDGYwgxnMYAYzmMEMZjCDGcxgBjOYwQxmMIMZ/F+N/w/79r9kHc+AuAAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xb = next(iter(train_dataloader))[\"images\"].to(device)[:8]\n", + "print(\"X shape:\", xb.shape)\n", + "show_images(xb).resize((8 * 64, 64), resample=Image.NEAREST)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FSPVe2DOOHXq" + }, + "source": [ + "We're sticking to a small dataset with 32 pixel images to keep training times manageable in this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZUImroTysoxp" + }, + "source": [ + "## Step 3: Define the Scheduler\n", + "\n", + "Our plan for training is to take these input images and add noise to them, then feed the noisy images to the model. And during inference, we will use the model predictions to iteratively remove noise. In `diffusers`, these processes are both handled by the **scheduler**. \n", + "\n", + "The noise schedule determines how much noise is added at different timesteps. Here's how we might create a scheduler using the default settings for 'DDPM' training and sampling (based on the paper [\"Denoising Diffusion Probabalistic Models\"](https://arxiv.org/abs/2006.11239):" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "ETMq70tpyEtj" + }, + "outputs": [], + "source": [ + "from diffusers import DDPMScheduler\n", + "\n", + "noise_scheduler = DDPMScheduler(num_train_timesteps=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4995PVTlyIm1" + }, + "source": [ + "The DDPM paper describes a corruption process that adds a small amount of noise for every 'timestep'. Given $x_{t-1}$ for some timestep, we can get the next (slightly more noisy) version $x_t$ with:

\n", + "\n", + "$q(\\mathbf{x}_t \\vert \\mathbf{x}_{t-1}) = \\mathcal{N}(\\mathbf{x}_t; \\sqrt{1 - \\beta_t} \\mathbf{x}_{t-1}, \\beta_t\\mathbf{I}) \\quad\n", + "q(\\mathbf{x}_{1:T} \\vert \\mathbf{x}_0) = \\prod^T_{t=1} q(\\mathbf{x}_t \\vert \\mathbf{x}_{t-1})$

\n", + "\n", + "\n", + "That is, we take $x_{t-1}$, scale it by $\\sqrt{1 - \\beta_t}$ and add noise scaled by $\\beta_t$. This $\\beta$ is defined for every t according to some schedule, and determines how much noise is added per timestep. Now, we don't necessarily want to do this operation 500 times to get $x_{500}$ so we have another formula to get $x_t$ for any t given $x_0$:

\n", + "\n", + "$\\begin{aligned}\n", + "q(\\mathbf{x}_t \\vert \\mathbf{x}_0) &= \\mathcal{N}(\\mathbf{x}_t; \\sqrt{\\bar{\\alpha}_t} \\mathbf{x}_0, {(1 - \\bar{\\alpha}_t)} \\mathbf{I})\n", + "\\end{aligned}$ where $\\bar{\\alpha}_t = \\prod_{i=1}^T \\alpha_i$ and $\\alpha_i = 1-\\beta_i$

\n", + "\n", + "The maths notation always looks scary! Luckily the scheduler handles all that for us. We can plot $\\sqrt{\\bar{\\alpha}_t}$ (labelled as `sqrt_alpha_prod`) and $\\sqrt{(1 - \\bar{\\alpha}_t)}$ (labelled as `sqrt_one_minus_alpha_prod`) to view how the input (x) and the noise are scaled and mixed across different timesteps:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "oP-rFQUzdx9h", + "outputId": "dea1ec0a-9a08-433a-a8d4-9f8731e2e3ea" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqCklEQVR4nO3dd3gU5d7G8e9uekgjCSlAIPTeawAFFEFQVGyISFNRFBTEior1VTwKHlEUFAvoUVARrIhiEBGkhg6hg0EgCTWV1J33j4WFSEtCktlN7s917bWzs1PuHUj2l5l5nsdiGIaBiIiIiEmsZgcQERGRik3FiIiIiJhKxYiIiIiYSsWIiIiImErFiIiIiJhKxYiIiIiYSsWIiIiImErFiIiIiJjK3ewAhWGz2Th48CD+/v5YLBaz44iIiEghGIZBWloaVatWxWq98PkPlyhGDh48SFRUlNkxREREpBj2799P9erVL/i+SxQj/v7+gP3DBAQEmJxGRERECiM1NZWoqCjH9/iFuEQxcvrSTEBAgIoRERERF3OpWyx0A6uIiIiYSsWIiIiImErFiIiIiJhKxYiIiIiYSsWIiIiImErFiIiIiJhKxYiIiIiYSsWIiIiImErFiIiIiJiqyMXIkiVL6Nu3L1WrVsVisfDtt99ecp3FixfTunVrvLy8qFu3LjNmzChGVBERESmPilyMZGRk0KJFC959991CLb93716uu+46unfvzvr16xkzZgz33nsvv/zyS5HDioiISPlT5LFpevfuTe/evQu9/LRp06hVqxaTJk0CoFGjRixdupT//ve/9OrVq6i7FxERkXKm1AfKW758OT169Cgwr1evXowZM+aC62RnZ5Odne14nZqaWirZPlq6l6TULAJ9PAjy9aCyryfhAV5EVfalir/XJQf2ERGRU2w2sOVCfg7k54Itzz5tywNbPhg2+8OWD0b++ecVeP/Ue45lz37fVnB9jFPTxqnps5+5wPyiPFO05c9m/Os1FGKZwmzj36sUdRvn2WbHB6FyzUvvqxSUejGSmJhIeHh4gXnh4eGkpqZy8uRJfHx8zllnwoQJvPjii6UdjR82HGT9/hPnfc/bw0pUZV8aRPjTpGogjasG0KxaIMGVPEs9l4hIkeVlQ04GZKdBTrp9OicD8rLsj9ysM9OFeZ2Xc6qYyIX8vEtPGzazj4Bcrqa3lt9ipDjGjRvH2LFjHa9TU1OJiooq8f3c1rY67aIrcyIzlxMnczmRmcPBE1kcSjlJVq6Nncnp7ExO58eNhxzrNAj3p0PtYDrWDqFznVACfT1KPJeIVDC5WZB1Ak6egJPHz0z/+zkn3f7ITj9TcGSn2Z9tueblvxCrB1jdweoGFjewWM5MW93AYj01bb3wPIv1POtYC27TYgUs9mnHM/96XZxnzrw+7z4u8vxvhTnTft5lLEVf5rzLFWIZ/4iLhCtdpV6MREREkJSUVGBeUlISAQEB5z0rAuDl5YWXl1dpR2Ngh/NXgDl5Ng6lnGTPkQziD6Wy9aD9sedIBtuT0tielMany//GzWqhfXQw1zQO55rG4UQF+5Z6ZhFxAXnZkHHY/kg/9ZyRDBlHID35zHsZR+yFRl5Wye3b3Rs8/cCzkv3h7g0ePuDuBe6nnj187PPdvcHD+8z02a/dPE89ThUUbh7216enrR6n5p2e9gQ39zPzre6F+wIWoQyKkZiYGObPn19g3sKFC4mJiSntXRebp7uVmiGVqBlSie4Nwhzzj2XksGrvUVbsOcayXUfYmZzO8j1HWb7nKC/9uJU2NStzS+vqXNc8kkAfnTERKZdyMiH1IKQeOPX8z6nnU/NSDsDJY0XfrsUK3oHgHQQ+lcEn6NT0qdfegeDlf6rQOFVsePkVfO3pZy8IRFyMxTAKc2fMGenp6ezatQuAVq1a8eabb9K9e3eCg4OpUaMG48aN48CBA3z66aeAvWlv06ZNGTlyJHfffTeLFi3i4Ycf5qeffip0a5rU1FQCAwNJSUkhICCgiB+x9Px9NIOFW5NYuDWJ1fuOYTt1JD3drVzTOJxBHWvSoVawboQVcSWGAelJcHwfHNsLx/eeet5nn844XLjtWN2hUpUzD78wqBQKlcJOva4CviHgE2wvODz97ZcmRMqRwn5/F7kYWbx4Md27dz9n/pAhQ5gxYwZDhw5l3759LF68uMA6jzzyCFu3bqV69eqMHz+eoUOHlviHMVNSahbfrT/AN3EH2J6U5pjfKDKAYZ2iuaFlVbw93ExMKCIF5OXAsd1weBsc3n7qeYe94MjNvPi6HpUgsBoEVIWAaqcep6YDq4F/pP1shv4QkQqu1IoRM7hCMXKaYRhsOZjKF6sSmLv2H7Jy7XeYB1fy5J4utRgcUxN/b13CESkzhgEnEiBxIxzaCMlb7cXHsT325qLnY7FCQHUIjobK0VC5FgTXsj9Xrmm/fKJCQ+SSVIw4gROZOcxevZ9P/9rHwRT7DWqBPh7c26UWQztHqygRKWk2GxzdCQfXnyo+NkDiJvtNoufjFQCh9aFKQ6jSwP4IqQuBUeCuZvwil0vFiBPJy7fxw8aDvLNoF3sOZwD2ouSBbnUY2ilal29EiisrBf5ZA/+shv2r4MAa+7x/s3pAWEOIaAHhTezTVRraL6foDIdIqVEx4oTybQY/bjzI27E72X2qKKle2Ycnr23I9c0jdaOryKWkJcLeP2Hfn/bi4/A2zulJ0t0HIltAZHOIaG5/rtJIZzpETKBixInl2wzmrTvAxF+2k5hqv3zTqkYQL/RtQouoIHPDiTiTjKP2wmPfn7B3CRzZce4ylaOhejuo3h6i2kF4U3s/FyJiOhUjLuBkTj7T/9zDtD92k5mTj8UCgzrW5LFeDQjQ/SRSEdny7Zdddv4CO3+13+9RgMV+piP6CqgRA1Ht7U1mRcQpqRhxIclpWbw2fxtz1x0AoIq/F89d31iXbqRiyDwGu2LtBciu3+zdoZ+tSiOodaX9UbMT+Aabk1NEikzFiAv6a/cRnp23mT1H7PeTXNUwjNdubkZYgLfJyURKWFoSxH8PW7+Dv5cVHGTNOxDq9oB6PaHOVTrzIeLCVIy4qOy8fN7/Yw9TFu0iJ99GkK8HL9/YlL4tqpodTeTypB6E+B9OFSB/UeDG07AmUL8n1Otlv/9DXZqLlAsqRlzcjqQ0xn61ns0HUgG4rnkk/3djUypXUosAcSFZKfbiY8Ns+xmQs1VrC41vhMY32G9CFZFyR8VIOZCbb2PKol1M+X0X+TaDKv5eTO7fkk51Q82OJnJh+Xmw53fYMAu2/VRwRNqoDtD4JmjUF4KiTIsoImVDxUg5sumfFMZ+tZ6dyelYLPDQVfUYfXU93Ky6uVWcyLG9EDcD1n8BGcln5oc2gBZ3QPPbIbC6afFEpOypGClnTubk8+IPW5i9ej8AHWsHM/mOVoTr5lYxU36evRXM6o9gd+yZ+b4h0PRWexFStZV6ORWpoFSMlFPfrT/A03M3kZGTT0glTybf0You9XTZRspYWhLEfQJxMyHt4Jn5da6GtsPsN6Kqx1ORCk/FSDm253A6I79YR/yhVKwWGNe7EfdeUUt9kkjpS46H5VNg41eQn2Of5xsCre6CNkMhuLap8UTEuagYKeeycvMZ/+1mvo77B4B+raox4eZmGnRPSp5h2Lti/+sd2LXwzPzq7aD9/fbWMO5e5uUTEadV2O9vNeZ3Ud4ebrx+a3OaVA3g5Z/imbfuADuT03h/UFuqBfmYHU/KA5vN3jHZn5MgceOpmRZodD3EPAQ1OpgaT0TKD50ZKQf+2n2EkZ+v5XhmLqF+nnwwuC2ta1Q2O5a4Kls+bP0W/ngDDsfb53n4QsuB0PEBCKljajwRcR26TFPB7D+WyX2fxRF/KBUvdyuT72jJtU0jzY4lrsSWD1vmwR+vw5Ht9nlegdBxBHQYoTFhRKTIVIxUQBnZeTw0ax2LtiVjscAzfRpxTxfd2CqXYBiw/WeIfREOb7PP8w6Ejg/aixCfIFPjiYjrUjFSQeXl23jhhy38b0UCAENiavJc3ybqIE3OL2El/PY8JCy3v/YOgphR0OE+e0EiInIZdANrBeXuZuXlG5tSM7gSr8yPZ+byvzmYksU7A1qppY2ccXiH/UzIth/tr9297feDdB6jMyEiUuZ0ZqQcm7/pEGO+XE9Ono2Y2iF8MLgN/t4eZscSM508Dotfg1XTwcgHi9XeR0i3cRCgkaFFpGQV9vvbWoaZpIz1aRbJzGHt8fNyZ/meo9w5fSVH07PNjiVmsOXbe0t9pw2snGYvRBpcBw+ugBveUSEiIqZSMVLOxdQJYdbwjgRX8mTTgRRuf385B0+cNDuWlKX9q2D6VfDDw5B51D5w3aBvYcAXUKWB2elERFSMVATNqgfy9YgYqgZ6s/twBrdO/Yvdh9PNjiWlLfMYfDcSProGDq0HrwDoNQEeWAZ1upudTkTEQcVIBVGnih9zHuhEnSqVOJiSRf/3V7AzKc3sWFIaDAM2fwPvtod1/7PPa3kXPBQHMQ+Cm+4bEhHnomKkAqka5MNX98fQODKAI+nZDJi+gu2JKkjKlRP74Yv+MOduyDhsvyRz9y9w07vgF2Z2OhGR81IxUsGE+HnxxfAONKkawJH0HAZMX0H8oVSzY8nlstlg5fvwXkfY+QtYPewtZEb8CTU6mp1OROSiVIxUQEG+nnxxb0eaVw/kWEYOd05fwZaDKWbHkuI6sR8+uxF+fgJy0iGqA4xYCt2e0mi6IuISVIxUUIG+Hnx2TwdaRAVxPDOXO6evZPMBFSQuxTBgw2yY2gn2LrEPZtdnIgxbAGENzU4nIlJoKkYqsEAfDz67pz2tagSRcjKXuz5aqXtIXEXGUfhqEMy7H7JToXo7+9mQ9sPBqh9rEXEt+q1VwQV4e/Dp3e1pERXEicxcBn64kr1HMsyOJRez6zf7vSHxP4DVHa561n42JKSO2clERIpFxYjg7+3Bp8Pa0+hUK5uB01fwz/FMs2PJv+XnwW8vwP9ugYxkqNIQhi+CKx8HNw0zJSKuS8WIAKfvIWnv6IfkzukrSUrNMjuWnJbyD8y4Dpb+1/663b1w3x8Q2cLcXCIiJUDFiDiE+nnx+b0dqRHsS8KxTAZ+qLFsnML2BTCtC+xfYe9F9bYZcN0k8PA2O5mISIlQMSIFRAR68/m9Haga6M2u5HQGfbSK1Kxcs2NVTPl58OuzMKu/fbTdqq3g/iXQpJ/ZyURESpSKETlHVLAvnw/vSKifF1sPpTJ85hqycvPNjlWxZByF//WDv96xv+7wgL0n1eBa5uYSESkFKkbkvGqFVmLm3e3w93Jn5d5jjJm9nnybYXasiuHgevig26m+QyrBbTOh92vqwExEyi0VI3JBTaoG8sHgtni6WVmwJZHx323GMFSQlKqNX8HHvSAlAYJrw/BYaHKT2alEREqVihG5qJg6IUy+oyUWC3yxMoG3fttpdqTyyZYPvzwDc4dDXhbU6wnDf4ewRmYnExEpdSpG5JJ6N4vk5RubAjA5diefrfjb5ETlTHY6zB4Iy6fYX1/xGAyYDT5BpsYSESkr6ilJCuWujjU5nJbN5NidPPfdZqr4eXJt00izY7m+lAP21jKJm8DNC/pNg6Y3m51KRKRM6cyIFNqYHvW4s0MNDANGz17PuoTjZkdybQfXw4dX2wuRSlVg6E8qRESkQlIxIoVmsVh46YYmdG9Qhew8G/fOXMP+Y+o2vli2zYdPekPaIXu37vfGQlQ7s1OJiJhCxYgUibublSl3tqZxZABHM3IY+skqUjLVKVqRxM2ELwdCbibU7g73/AqVa5qdSkTENCpGpMgqebnz8dB2RAZ6s/twBiP+F0dOns3sWM7PMGDJG/DDw2DYoNVdMPBr8A40O5mIiKlUjEixRAR68/HQdvh5ubN8z1GemrtRfZBcjM0GPz8Bi/7P/vqKR+GGKeDmYW4uEREnoGJEiq1RZADvDmyNm9XC3LUHeDt2l9mRnFNeNnxzD6z6wP762v/A1c+BxWJuLhERJ6FiRC5L1/pVHH2Q/Pe3HXy3/oDJiZxMTibMugO2zAWrB9zyEXQcYXYqERGnomJELtudHWpw/5W1AXhizkY27D9hbiBnkZ0Gn98KuxfZx5gZ+BU0u9XsVCIiTkfFiJSIJ65tyNUNw8jOszH80zUkpWaZHclcWSnw2c3w9zLwCoBB86DOVWanEhFxSipGpES4WS28dUdL6of7kZyWzX2friErN9/sWObIPAYzb4B/VoF3EAz+Dmp0MDuViIjTUjEiJcbf24MPB7ejsq8HG/5J4clvKmALm/TDMLMvHFoPviEw9Eeo1trsVCIiTk3FiJSoGiG+vDewDe5WC9+tP8jUP3abHanspCfDjOsgaTP4hcPQ+RDRzOxUIiJOT8WIlLiYOiG8cEMTAN74ZTsLtyaZnKgMZBy1X5o5sh0CqsGwnyGsodmpRERcgooRKRV3dazJoI41MQwYM3sd2xJTzY5Uek4eh89uhMPx4B9pvzQTUsfsVCIiLkPFiJSa5/o2plOdEDJy8rnv07jyOYZNVqq91czpkXcHfw/Btc1OJSLiUopVjLz77rtER0fj7e1Nhw4dWLVq1UWXf+utt2jQoAE+Pj5ERUXxyCOPkJVVwZt+VgAeblbevbM1UcE+JBzLZPSX67DZytENrdnp9n5EDq4Fn2B7IVKlvtmpRERcTpGLkS+//JKxY8fy/PPPs3btWlq0aEGvXr1ITk4+7/JffPEFTz31FM8//zzx8fF89NFHfPnllzz99NOXHV6cX+VKnky7qw3eHlYWbz/MW7/tMDtSyTjds+r+lfaB7gbNg/DGZqcSEXFJRS5G3nzzTYYPH86wYcNo3Lgx06ZNw9fXl48//vi8y//111907tyZO++8k+joaHr27MmAAQMueTZFyo8mVQOZcLO9Vcnbi3bx65ZEkxNdpvxc+Gow7PsTPP3hrrlQtaXZqUREXFaRipGcnBzi4uLo0aPHmQ1YrfTo0YPly5efd51OnToRFxfnKD727NnD/Pnz6dOnzwX3k52dTWpqaoGHuLZ+raoztFM0AGO/2sDuw+nmBioumw2+Gwm7FoK7Dwz8Gqq3NTuViIhLK1IxcuTIEfLz8wkPDy8wPzw8nMTE8/+1e+edd/LSSy/RpUsXPDw8qFOnDt26dbvoZZoJEyYQGBjoeERFRRUlpjipZ65rRPvoYNKz87j/szjSs/PMjlQ0hgG/PgsbvwSLG9z+KdSMMTuViIjLK/XWNIsXL+bVV1/lvffeY+3atcydO5effvqJl19++YLrjBs3jpSUFMdj//79pR1TyoCHm5UpA1sRHuDFruR0Hv96g2v10LrsLVjxrn36pvegfk9T44iIlBdFKkZCQ0Nxc3MjKalgJ1ZJSUlEREScd53x48czaNAg7r33Xpo1a0a/fv149dVXmTBhAjab7bzreHl5ERAQUOAh5UOYvzdT72qDh5uFnzcnMu2PPWZHKpy1n8FvL9ine74CLe4wNY6ISHlSpGLE09OTNm3aEBsb65hns9mIjY0lJub8p6szMzOxWgvuxs3NDcC1/iqWEtO6RmVevKEpAG/8so2lO4+YnOgSts2HHx62T3ceDZ1GmZtHRKScKfJlmrFjxzJ9+nRmzpxJfHw8DzzwABkZGQwbNgyAwYMHM27cOMfyffv2ZerUqcyePZu9e/eycOFCxo8fT9++fR1FiVQ8A9pH0b9tFDYDRs9eR2KKk/Y7s381zBkGhg1a3gU9XjQ7kYhIueNe1BX69+/P4cOHee6550hMTKRly5YsWLDAcVNrQkJCgTMhzz77LBaLhWeffZYDBw5QpUoV+vbtyyuvvFJyn0JcjsVi4cUbm7DpQApbD6Uy6ou1zLqvIx5uTtQp8PF99r5E8rKgXi/oOxksFrNTiYiUOxbDBa6VpKamEhgYSEpKiu4fKWf+PprB9W8vJS07j/uurM3TfRqZHcnu5HH4qCcc2QERze0D33n5mZ1KRMSlFPb724n+DJWKqGZIJd64rTkAHyzZ4xwdouXl2Ds1O7LDPgLvnV+pEBERKUUqRsR01zaN5J4utQB49OsNJBzNNC+MYcCPj8DeJeDpB3d+CQGR5uUREakAVIyIU3iqd0Na1wgiLSuPB7+IIys335wgf06C9f8DixVumwERzczJISJSgagYEafg4WZlyp2tqezrweYDqbz849ayD7F5Liw61Rlfnzeg3jVln0FEpAJSMSJOo2qQD//t3xKLBT5fmcB36w+U3c4PbYBvH7RPdxwJ7e4tu32LiFRwKkbEqXRrEMao7nUBGDd3E7uS00p/p+mHYfZAyDsJdXtAzwsPVSAiIiVPxYg4nTE96tOpTgiZOfk88L+1ZOaU4oB6p1vOpOyH4Dpwy0dgVWd8IiJlScWIOB03q4XJd7QizN+LncnpvPD9ltLb2YKnIOEv8AqAAbPBJ6j09iUiIuelYkScUhV/L966w37/yFdr/imd+0fWfAxrPgIscPN0qFK/5PchIiKXpGJEnFanOqE8dFU9AJ6eu4l9RzJKbuN//wXzH7dPXz0eGlxbctsWEZEiUTEiTu3hq+rSPjqYjJx8Rs1aS3ZeCfQ/knrIfp+ILQ+a3Axdxl7+NkVEpNhUjIhTc3ezMnlAS4JO9T/yn5+3X94G83Ph66GQcRjCmsCNUzT4nYiIyVSMiNOLDPRh4q0tAPh42V5+25pU/I399gLsX2G/YbX/Z+BZqWRCiohIsakYEZfQo3E4d3e2j1/z2JwNHEo5WfSNbP0Olk+xT9/0HoTUKcGEIiJSXCpGxGU82bsBTasFcCIzl9Gz1pOXbyv8ykd2wbcj7dOdHoJGfUsnpIiIFJmKEXEZXu5uTBnQmkqebqzad4y3F+0q3Io5GfDVIMhJg5qd4eoXSjWniIgUjYoRcSnRoZV49Wb7SLrvLNrJX7uPXHwFw4Afx0LyVqgUBrd+DG7uZZBUREQKS8WIuJwbW1bj9rbVMQwYM3s9R9OzL7zwus9g42ywuMFtn4B/RNkFFRGRQlExIi7phRuaUDfMj+S0bB77egOGYZy7UPI2mP+Effrq8RDdpWxDiohIoagYEZfk6+nOlDtb4elu5ffth/l0+d8FF8g9CXPuto/EW+cq6DTanKAiInJJKkbEZTWMCGBc74YAvDI/nu2JaWfe/OUZSN5iv0+k3/tg1X91ERFnpd/Q4tKGdoqmW4Mq5OTZeHjWOrJy82Hr96cGwAP6TQO/MHNDiojIRakYEZdmsViYeFsLQv082Z6UxtRvf4fvR9nf7Dwa6l5tbkAREbkkFSPi8kL9vHjjtha4kU+XTeMgKwWqtYWrxpsdTURECkHFiJQL3RuE8XF0LO2sO0jHl6O9p4Kbh9mxRESkEFSMSPmQsJIrkz4F4Kmcexj76wlstvM09xUREaejYkRcX3YazLsPi2Ejpf6tLLR25o8dh5nx1z6zk4mISCGoGBHX98vTcHwfBEYRePObPHNdIwBe+3kb8YdSzc0mIiKXpGJEXNu2+bD2U8Bib8brHcigjjW5umEYOflnNfcVERGnpWJEXFd6Mnz/kH2600OO7t4tFgv/ubU5oX5e7ExO55Wf4k0MKSIil6JiRFyTYcD3D0PmEQhrAlc9W+DtUD8vJt3eAoDPVvzNb1uTzEgpIiKFoGJEXNPambDjZ3DzhFumg7vXOYt0rV+Fe7rUAuCJbzaSnJpV1ilFRKQQVIyI6zm2FxY8bZ+++jkIb3LBRZ+4tgGNIgM4lpHDY3M2nn90XxERMZWKEXEtNpv9PpHcDKjZBTqOvOjiXu5uvH1HS7zcrSzZcZ7RfUVExHQqRsS1rPkI9v0JHr5w45RCjcZbL9zfMbrvq/Pj2ZmUdok1RESkLKkYEddxfB8sfN4+3eNFCK5V6FUHx0RzZf0qZOfZGPPlenLybKWTUUREikzFiLgGmw2+G3Xq8kxnaHdvkVa3Wi28cWtzgnw92HIwlbd+21FKQUVEpKhUjIhriPvEfnnG3afQl2f+LTzAmwn9mgEw9Y/drNp7rKRTiohIMagYEed3/G9Y+Jx9uscLEFy72Jvq3SySW9tUxzDgkS/Xk5qVWzIZRUSk2FSMiHMzDHvrmZx0qNEJ2t932Zt8vm9jqlf24cCJk7zw/ZYSCCkiIpdDxYg4t7gZsPcPcPcu9uWZf/P39uC//VtitcDctQf4aeOhy88pIiLFpmJEnFfKAfh1vH366ucgpE6JbbpddDAPdLNv7+l5m0hMUe+sIiJmUTEizskwYP5jkJMG1dtDhxElvovRV9enWbVAUk7m8vicDdhs6p1VRMQMKkbEOcX/ANvng9UDbngbrG4lvgtPdyv/7d8Sbw8rf+48wszl+0p8HyIicmkqRsT5ZKXA/Mft013GQFijUttV3TA/nulj3/6En7exQ72zioiUORUj4nx+exHSEyG4DlzxWKnv7q6ONenWoAo5eTbGzF5Pdl5+qe9TRETOUDEiziVhhX38GYC+k8HDu9R3abFYeP3W5gRX8mTroVTeXKjeWUVEypKKEXEeeTnww2j7dKu7oNYVZbbrMH9vJtxs7531gyV7WLHnaJntW0SkolMxIs5j2WQ4vA18Q+Gal8t8972aRHB7W3vvrI9+tUG9s4qIlBEVI+IcjuyEJa/bp3v/B3yDTYnxXN8m1Aj25cCJkzz/nXpnFREpCypGxHyGAT8+Avk5ULcHNL3FtCh+Xu6O3lnnrTvADxsOmpZFRKSiUDEi5tv41ZkRea+bBBaLqXHa1KzMqO51AXhm3iYOpZw0NY+ISHmnYkTMdfIE/PqsffrKx6BytJlpHB66uh4tqgeSmpXHY1+rd1YRkdKkYkTMtXgCZCRDSF3o9JDZaRw83M70zrps11E++Wuf2ZFERMotFSNinkMbYdUH9uk+E8Hdy9w8/1K7ih/PXtcYgP8s2Mb2RPXOKiJSGlSMiDlsNvjpUTBs0KQf1OludqLzGtihBlc1DCMnz8bo2evUO6uISClQMSLmWP85/LMKPP2g16tmp7kgi8XCa7c0I7iSJ9sS03jzV/XOKiJS0opVjLz77rtER0fj7e1Nhw4dWLVq1UWXP3HiBCNHjiQyMhIvLy/q16/P/PnzixVYyoHMY/Db8/bpbk9BQFVz81xCmL83r53unfVP9c4qIlLSilyMfPnll4wdO5bnn3+etWvX0qJFC3r16kVycvJ5l8/JyeGaa65h3759zJkzh+3btzN9+nSqVat22eHFRcW+BJlHoUoj6DDC7DSF0rNJBP3bRql3VhGRUmAxDKNIbRY7dOhAu3btmDJlCgA2m42oqCgeeughnnrqqXOWnzZtGm+88Qbbtm3Dw8OjWCFTU1MJDAwkJSWFgICAYm1DnMSBOJh+NWDA0PkQ3dnsRIWWnp1Hn8l/knAsk36tqvHf/i3NjiQi4tQK+/1dpDMjOTk5xMXF0aNHjzMbsFrp0aMHy5cvP+8633//PTExMYwcOZLw8HCaNm3Kq6++Sn7+hW8EzM7OJjU1tcBDygGbDX56DDCg+R0uVYjAub2z/rhRvbOKiJSEIhUjR44cIT8/n/Dw8ALzw8PDSUxMPO86e/bsYc6cOeTn5zN//nzGjx/PpEmT+L//+78L7mfChAkEBgY6HlFRUUWJKc5qwxdwcC14+sM1L5mdplgK9s66Wb2zioiUgFJvTWOz2QgLC+ODDz6gTZs29O/fn2eeeYZp06ZdcJ1x48aRkpLieOzfv7+0Y0ppy0qF3160T3d9AvzDL768EzvdO2vKyVz1zioiUgKKVIyEhobi5uZGUlJSgflJSUlEREScd53IyEjq16+Pm5ubY16jRo1ITEwkJyfnvOt4eXkREBBQ4CEu7s+J9p5Wg+u4zE2rF+LhZuVN9c4qIlJiilSMeHp60qZNG2JjYx3zbDYbsbGxxMTEnHedzp07s2vXLmw2m2Pejh07iIyMxNPTs5ixxaUc3Q3L37NPXzsB3F3/371OFT+eUe+sIiIlosiXacaOHcv06dOZOXMm8fHxPPDAA2RkZDBs2DAABg8ezLhx4xzLP/DAAxw7dozRo0ezY8cOfvrpJ1599VVGjhxZcp9CnNsvz4AtF+r2gHo9zU5TYu7qUIPuDaqQk2djzJfr1TuriEgxuRd1hf79+3P48GGee+45EhMTadmyJQsWLHDc1JqQkIDVeqbGiYqK4pdffuGRRx6hefPmVKtWjdGjR/Pkk0+W3KcQ57XrN9jxM1jd7T2tWixmJyoxFouF/9zanGvf+pP4Q6m8uXAH43o3MjuWiIjLKXI/I2ZQPyMuKj8XpnaGI9uh44P2SzTl0C9bErn/szgsFpg1vCMda4eYHUlExCmUSj8jIkWy+kN7IeIbAl3L75mwXuqdVUTkshT5Mo1IoWQcgd9PnQm5ajz4BJkap7SN79uY5XuOknAsk+e/26LeWYsgPz+f3FwVcCKuyMPDo0Br2eJSMSKlY9H/QXYKRDSD1oPNTlPqTvfOetu0v5i37gBXNwrj+ubOPQCg2QzDIDExkRMnTpgdRUQuQ1BQEBEREVgu455AFSNS8pK2wNqZ9ulr/wPWy6+aXUGbmpUZ2b0u7yzaxTPzNtO2ZjARgd5mx3JapwuRsLAwfH19L+sXmYiUPcMwyMzMdAyUGxkZWextqRiRkvfreDBs0OgGlxt/5nI9fHU9/thxmI3/pPDY1xv49O72WK36kv23/Px8RyESEqIbfkVclY+PDwDJycmEhYUV+5KNbmCVkrXrN9gdC1YPuOZFs9OUOQ83K/891Tvr0l1HmKHeWc/r9D0ivr6+JicRkct1+uf4cu79UjEiJceWD78+Z59ufx8E1zY3j0nO7p31tQXb2JGk3lkvRJdmRFxfSfwcqxiRkrP+C0jeAt6BcOVjZqcxVYHeWWevJyfPdumVREQqKBUjUjKy0+0taACufAJ8g83NY7LTvbMGV/Jk66neWUXKUnR0NG+99Vahl9+3bx8Wi4X169eXWqayVtRjIOZRMSIlY/kUSE+EytHQfrjZaZxCmL83E25uBsD7S3azYs9RkxOJs7JYLHz77bdmxxAxjYoRuXxpibBssn26xwvg7mVqHGfSq0kEt7etrt5Z5bxycnLMjuD0dIwqBhUjcvl+fwVyM6F6O2h8k9lpnM5zfZtQI9iXAydO8sJ3W8yOI5dpzpw5NGvWDB8fH0JCQujRowcZGRnk5+czduxYgoKCCAkJ4YknnmDIkCHcdNNNjnW7devGqFGjGDNmDKGhofTq1Yvo6GgA+vXrh8Vicby+mN27d3PjjTcSHh6On58f7dq147fffrvoOhaLhalTp9K7d298fHyoXbs2c+bMOWe5PXv20L17d3x9fWnRogXLly93vHf06FEGDBhAtWrV8PX1pVmzZsyaNatQx+3szz9q1CgCAwMJDQ1l/PjxnD1EWnR0NC+//DKDBw8mICCA++67D4BvvvmGJk2a4OXlRXR0NJMmTSqw7eTkZPr27YuPjw+1atXi888/L3QuMZ+KEbk8SVtg3f/s0z1fKVej8pYUe++sLbBaYO66A/y08ZDZkZySYRhk5uSZ8ijseKGHDh1iwIAB3H333cTHx7N48WJuvvlmDMNg0qRJzJgxg48//pilS5dy7Ngx5s2bd842Zs6ciaenJ8uWLWPatGmsXr0agE8++YRDhw45Xl9Meno6ffr0ITY2lnXr1nHttdfSt29fEhISLrre+PHjueWWW9iwYQMDBw7kjjvuID4+vsAyzzzzDI899hjr16+nfv36DBgwgLy8PACysrJo06YNP/30E5s3b+a+++5j0KBBrFq1qlDH7/Tnd3d3Z9WqVUyePJk333yTDz/8sMAyEydOpEWLFqxbt47x48cTFxfH7bffzh133MGmTZt44YUXGD9+PDNmzHCsM3ToUPbv38/vv//OnDlzeO+99xydcYnz06i9cnk+u9ner0jjm+D2mWancWqTft3OO4t2EejjwS9jrqzQvbNmZWWxd+9eatWqhbe3/Thk5uTR+LlfTMmz9aVe+Hpeug/ItWvX0qZNG/bt20fNmjULvFe1alUeeeQRHn/8cQDy8vKoVasWbdq0cdwP0q1bN1JTU1m7dm2BdS0WC/PmzStwFqWomjZtyogRIxg1ahRgP8MwZswYxowZ49jHiBEjmDp1qmOdjh070rp1a9577z327dtHrVq1+PDDD7nnnnsA2Lp1K02aNCE+Pp6GDRued7/XX389DRs2ZOLEiZfM2K1bN5KTk9myZYujOehTTz3F999/z9atWx25W7VqVaCQGzhwIIcPH+bXX391zHviiSf46aef2LJlCzt27KBBgwasWrWKdu3aAbBt2zYaNWrEf//7X8cxkNJxvp/n0zRqr5S+XbFnOjjr8bzZaZzew1fXo3n1QFJO5vL4nA3YbE7/d4D8S4sWLbj66qtp1qwZt912G9OnT+f48eOkpKRw6NAhOnTo4FjW3d2dtm3bnrONNm3aXHaO9PR0HnvsMRo1akRQUBB+fn7Ex8df8sxITEzMOa//fWakefPmjunT3XufPsOQn5/Pyy+/TLNmzQgODsbPz49ffvnlkvs9W8eOHQv0SxETE8POnTvJz893zPv3cYuPj6dz54K9OXfu3NmxXnx8PO7u7gWObcOGDQkKCip0LjGXuoOX4rHZ4LcX7NPth1fYDs6K4nTvrNe9/Sd/7jzCzOX7GNa5ltmxnIaPhxtbX+pl2r4Lw83NjYULF/LXX3/x66+/8s477/DMM8+wcOHCQu+rUqVKxY3p8Nhjj7Fw4UImTpxI3bp18fHx4dZbby2Rmz09PDwc06eLBpvN3k/OG2+8weTJk3nrrbdo1qwZlSpVYsyYMSV+k2lJHCNxLTozIsWzdR4kbgRPf7iiYndwVhR1qvjxTJ9GALz2s3pnPZvFYsHX092UR1F6kLRYLHTu3JkXX3yRdevW4enpSWxsLJGRkaxcudKxXF5eHnFxcYXapoeHR4EzA5eybNkyhg4dSr9+/WjWrBkRERHs27fvkuutWLHinNeNGjUq0n5vvPFG7rrrLlq0aEHt2rXZsaNofeicfYxOZ6hXr95FxzRp1KgRy5YtOydL/fr1cXNzo2HDhucc7+3bt2tEaBeiYkSKLj/3TAdnnR+GShrorCju6liTbg2qkK3eWV3OypUrefXVV1mzZg0JCQnMnTuXw4cP06hRI0aPHs1rr73Gt99+y7Zt23jwwQcL/WUYHR1NbGwsiYmJHD9+/JLL16tXj7lz57J+/Xo2bNjAnXfe6Th7cTFff/01H3/8MTt27OD5559n1apVjntMCqNevXqOM0Px8fHcf//9JCUlFXp9gISEBMaOHcv27duZNWsW77zzDqNHj77oOo8++iixsbG8/PLL7Nixg5kzZzJlyhQee8z+h1CDBg249tpruf/++1m5ciVxcXHce++9jkHcxPmpGJGiW/spHNsDlapAxwfNTuNyLBYLr9/SnMq+Huqd1cUEBASwZMkS+vTpQ/369Xn22WeZNGkSvXv35tFHH2XQoEEMGTKEmJgY/P396devX6G2O2nSJBYuXEhUVBStWrW65PJvvvkmlStXplOnTvTt25devXrRunXrS6734osvMnv2bJo3b86nn37KrFmzaNy4caEyAjz77LO0bt2aXr160a1bNyIiIop80+3gwYM5efIk7du3Z+TIkYwePdrRfPdCWrduzVdffcXs2bNp2rQpzz33HC+99BJDhw51LPPJJ59QtWpVunbtys0338x9991HWFhYkbKJedSaRoomJwPebgXpSdD7Dehw8V8icmELNicy4n9xWCwwe3hHOtSuOGeYLnb3fXkydOhQTpw44RS9q5ZEi53L1a1bN1q2bKku2ssZtaaRsrdymr0QqRwNbYaancalXdv0TO+sY7/aQMpJ9c4qIhWTihEpvMxjsPRUt+/dnwV3T3PzlAPP9W1CzRB776zPzNtU6M63pHxr0qQJfn5+5304a8+iCQkJF8zs5+dXpOa/UvGoaa8U3tI3ITsFwptB01vMTlMu+Hm5M/mOVtw69S9+3HiIbg3CuLVNdbNjSQk5u4fQopg/fz65uec/UxYeHl6sbZZ2oVu1atWLjvhbtWpVFi9eXKoZxHWpGJHCSTkAKz+wT/d4Hqw6qVZSWkYF8cg19Xnjl+08991m2tSsTK1Q9bNQkf27d1dX4O7uTt26dc2OIS5K3yhSOIsnQH421OwMdXuYnabcGdG1Dh1rB5OZk8/o2evU3FdEKhQVI3Jph3fA+lPXqXu8oMHwSoGb1cJ/+7ck0MeDjf+kqLmviFQoKkbk0ha9BIYNGlwHUe3NTlNuRQb68J9bmgHw/pLdLNt1xOREIiJlQ8WIXNyBOIj/ASxWuHq82WnKvWubRjKgfY1TzX3XcyyjZMf8EBFxRipG5OJ+f9X+3Lw/hBV+DAspvvHXN6JOlUokpWbz5Dcb1dxXRMo9FSNyYQkrYNdvYHWHrk+anabC8PV05+0BrfB0s7JwaxKfr1T/DFI+LF68GIvF4jID2O3btw+LxXLRJsv/NmPGDIKCgkotU1krzjEoDhUjcmGnB8NrdRcEa6j7stSkaiBP9m4IwMs/bmWnRvct1ywWi1N0GV/aOnXqxKFDhwgMDDQ7ijgZFSNyfnv+gH1/gpsnXPm42WkqpGGdoula3z6670Oz1pGVW/gh5sU15ORUrHuCPD09iYiIwKIWeWXuQp3oOQsVI3Iuw4DfX7FPtxkGgeoR1AxWq4WJt7Ug1M+TbYlpvPbzNrMjCTBnzhyaNWuGj48PISEh9OjRg4yMDPLz8xk7dixBQUGEhITwxBNPMGTIkAID03Xr1o1Ro0YxZswYQkND6dWrF9HR0QD069cPi8XieH0pU6dOpU6dOnh6etKgQQM+++yzAu9bLBY+/PBD+vXrh6+vL/Xq1eP7778vsMzmzZvp3bs3fn5+hIeHM2jQII4cKVwrrm7duvHQQw8xZswYKleuTHh4ONOnTycjI4Nhw4bh7+9P3bp1+fnnnx3r/PsyzelLGr/88guNGjXCz8+Pa6+9lkOHDhXYz5gxYwrs+6abbiowYu97771HvXr18Pb2Jjw8nFtvvbVQn2HBggV06dLF8W92/fXXs3v37gsufzr/Tz/9RPPmzfH29qZjx45s3rz5nGUv9plWr17NNddcQ2hoKIGBgXTt2pW1a9cWKjPY/22nTp1K79698fHxoXbt2syZM8fx/ulLK19++SVdu3bF29ubzz//HJvNxksvvUT16tXx8vKiZcuWLFiwoMC2V61aRatWrfD29qZt27asW7eu0Lkuh4oROdeu32D/SnD3hivGmp2mQqvi78Ubt7YAYMZf+1i0LcnkRKXIMOyjQpvxKORNwocOHWLAgAHcfffdxMfHs3jxYm6++WYMw2DSpEnMmDGDjz/+mKVLl3Ls2DHmzZt3zjZmzpyJp6cny5YtY9q0aaxevRqATz75hEOHDjleX8y8efMYPXo0jz76KJs3b+b+++9n2LBh/P777wWWe/HFF7n99tvZuHEjffr0YeDAgRw7dgyAEydOcNVVV9GqVSvWrFnDggULSEpK4vbbby/UsTj9WUJDQ1m1ahUPPfQQDzzwALfddhudOnVi7dq19OzZk0GDBpGZmXnBbWRmZjJx4kQ+++wzlixZQkJCAo899lihM6xZs4aHH36Yl156ie3bt7NgwQKuvPLKQq2bkZHB2LFjWbNmDbGxsVitVvr164fNdvFOBx9//HEmTZrE6tWrqVKlCn379i1w5uFSnyktLY0hQ4awdOlSVqxYQb169ejTpw9paYW/HDt+/HhuueUWNmzYwMCBA7njjjuIj48vsMxTTz3F6NGjiY+Pp1evXkyePJlJkyYxceJENm7cSK9evbjhhhvYuXMnAOnp6Vx//fU0btyYuLg4XnjhhSL9W1wWwwWkpKQYgJGSkmJ2lPLPZjOM97saxvMBhrHgabPTyCkvfL/ZqPnkj0brl341klJPmh3nsp08edLYunWrcfLkWZ8lO93+/86MR3Z6oXLHxcUZgLFv375z3ouMjDRef/11x+vc3FyjevXqxo033uiY17VrV6NVq1bnrAsY8+bNK/Tx69SpkzF8+PAC82677TajT58+Bbb57LPPOl6np6cbgPHzzz8bhmEYL7/8stGzZ88C29i/f78BGNu3b79khq5duxpdunRxvM7LyzMqVapkDBo0yDHv0KFDBmAsX77cMAzD+P333w3AOH78uGEYhvHJJ58YgLFr1y7HOu+++64RHh5eYD+jR48usO8bb7zRGDJkiGEYhvHNN98YAQEBRmpq6iUzX8rhw4cNwNi0aZNhGIaxd+9eAzDWrVtXIP/s2bMd6xw9etTw8fExvvzyy0J/pn/Lz883/P39jR9++KFQOQFjxIgRBeZ16NDBeOCBBwrkfuuttwosU7VqVeOVV14pMK9du3bGgw8+aBiGYbz//vtGSEhIgZ/LqVOnFjgG53Pen+dTCvv9rTMjUtD2+XBwHXhUgi6PmJ1GTnny2oY0jPDnaEYOj361AZtNzX3N0KJFC66++mqaNWvGbbfdxvTp0zl+/DgpKSkcOnSIDh06OJZ1d3enbdu252yjTZs2l50jPj6ezp07F5jXuXPnc/4ybt68uWO6UqVKBAQEkJycDMCGDRv4/fffC4ys27Ch/abpi12quND23dzcCAkJoVmzZo55pwf1O73P8/H19aVOnTqO15GRkRdd/t+uueYaatasSe3atRk0aBCff/75Rc/EnG3nzp0MGDCA2rVrExAQ4LhEdqkRhmNiYhzTwcHBNGjQoMCxv9RnSkpKYvjw4dSrV4/AwEACAgJIT08v0sjGZ2c4/frf//5n//9LTU3l4MGDF/1/Ex8f77j8dKH9lBYNlCdn2Gyw6NS9Ih1HQKVQc/OIg7eHG+8MaEXfKUv5c+cRpi3ZzYPdytmgZB6+8PRB8/ZdCG5ubixcuJC//vqLX3/9lXfeeYdnnnmGhQsXFnpXlSqV3SCIHh4eBV5bLBbHJYj09HT69u3Lf/7zn3PWi4yMLPb2z553+kbVi132ON82jLMum1mt1nP62jn7koi/vz9r165l8eLF/Prrrzz33HO88MILrF69+pJNbPv27UvNmjWZPn06VatWxWaz0bRp08u+sfhSn2nIkCEcPXqUyZMnU7NmTby8vIiJiSnxG5rL8v/a5dKZETlj67eQvAW8AiBmlNlp5F/qhfvz0g1NAZj06w7i/j5mcqISZrGAZyVzHkVo3WGxWOjcuTMvvvgi69atw9PTk9jYWCIjI1m5cqVjuby8POLi4gq1TQ8PD/LzC99aqlGjRixbtqzAvGXLltG4ceNCb6N169Zs2bKF6Oho6tatW+DhTF9iVapUKXDzZ35+/jk3jLq7u9OjRw9ef/11Nm7cyL59+1i0aNFFt3v06FG2b9/Os88+y9VXX02jRo04fvx4oTKtWLHCMX38+HF27NhBo0aF7xRy2bJlPPzww/Tp04cmTZrg5eVV6BuHz5fh9OuLZQgICKBq1aoX/X/TqFEjNm7cSFZW1gX3U1p0ZkTsbPn2kXnBXoj4BpubR87rtrbVWbb7CN+tP8hDX6xj/ugrCPL1NDtWhbFy5UpiY2Pp2bMnYWFhrFy5ksOHD9OoUSNGjx7Na6+9Rr169WjYsCFvvvlmoTv3io6OJjY2ls6dO+Pl5UXlypUvuvzjjz/O7bffTqtWrejRowc//PADc+fO5bfffiv0Zxk5ciTTp09nwIABPPHEEwQHB7Nr1y5mz57Nhx9+iJubW6G3VZquuuoqxo4dy08//USdOnXOOa4//vgje/bs4corr6Ry5crMnz8fm81GgwYNLrrdypUrExISwgcffEBkZCQJCQk89dRThcr00ksvERISQnh4OM888wyhoaEFWk1dSr169fjss89o27YtqampPP744/j4+BR6fYCvv/6atm3b0qVLFz7//HNWrVrFRx99dNF1Hn/8cZ5//nnq1KlDy5Yt+eSTT1i/fj2ff24fCPXOO+/kmWeeYfjw4YwbN459+/YxceLEIuUqLp0ZEbtNX8ORHeBTGTo+YHYauQCLxcIr/ZoRHeLLwZQsHp+j7uLLUkBAAEuWLKFPnz7Ur1+fZ599lkmTJtG7d28effRRBg0axJAhQ4iJicHf359+/foVaruTJk1i4cKFREVF0apVq0suf9NNNzF58mQmTpxIkyZNeP/99/nkk0/o1q1boT/L6b+S8/Pz6dmzJ82aNWPMmDEEBQVhtTrPV8Pdd9/NkCFDGDx4MF27dqV27dp0797d8X5QUBBz587lqquuolGjRkybNo1Zs2bRpEmTi27XarUye/Zs4uLiaNq0KY888ghvvPFGoTK99tprjB49mjZt2pCYmMgPP/yAp2fh/yj46KOPOH78OK1bt2bQoEE8/PDDhIWFFXp9sLeUmj17Ns2bN+fTTz9l1qxZlzwz9vDDDzN27FgeffRRmjVrxoIFC/j++++pV68eAH5+fvzwww9s2rSJVq1a8cwzz5z3Ml5psBgu8JssNTWVwMBAUlJSCAgIMDtO+ZOfB1PawvG90OMF3bjqAjYfSOHm9/4iJ9/G830bM6yza/WQm5WVxd69e6lVq1aBm+XKm6FDh3LixIkK0btqRbB48WK6d+/O8ePHTe3y3WKxMG/evCKdjSlNF/t5Luz3t/OUv2KeTV/ZCxHfUGh/n9lppBCaVgvk6T72lg8T5m9j0z8pJicSESk+FSMVXX4eLDl1arLTQ/ab+cQlDOkUTc/G4eTk2xg1ay1pWc7d3bMUXpMmTQo0uT37cfr6fmlKSEi44P79/PyK1ATVLK76GT7//PMLZr7UpSdXpss0Fd2G2TDvfvANgdEbwcvP7ERSBCcyc7ju7aUcOHGSvi2q8vYdLV1i3I+KcpmmuP7+++8LjiUSHh6Ov79/qe4/Ly+Pffv2XfD96Oho3N2du/2Dq36GtLQ0kpLO39Oyh4cHNWvWLONEl1YSl2mc719Cyo4t/8xZkZhRKkRcUJCvJ28PaMnt76/ghw0H6VwnhDva1zA7llwms79w3N3dqVvXtfuxcdXP4O/vX+rFpjPSZZqKbPM3cHSXvQVN++Fmp5FialMzmEd71gfghR+2sCOp8ONbiIg4AxUjFVWBsyIjwaviVeLlyYgr63BFvVCycm2M/HwtJ3MK34GWmVzgKrGIXEJJ/ByrGKmotsyz9yviHQTt7zc7jVwmq9XCf/u3pIq/FzuT03nh+y1mR7qo091lF3YMERFxXqd/jv/dDX5R6J6RishmK3hWxFs3BZcHoX5evNW/JXd9tJIv1+ynQ+1gbm5d3exY5+Xm5kZQUJBj8DBfX1+XuPFWRM4wDIPMzEySk5MJCgq6rF57VYxURFu/hcPbwCsQOuisSHnSuW4oD11Vj7djd/LMvM00rRZI/XDnvAQXEREBXHxEVxFxfkFBQY6f5+JSMVLR2Gzwx+v26Y4PgHeguXmkxI2+uh5r/z7O0l1HGPG/OL4f1QU/L+f7UbdYLERGRhIWFnbBZqwi4tw8PDxKZBwj5/sNJaUr/ns4HG8fmbfjCLPTSClws1p4646WXPf2n+w5nMG4uZucuv8RNzc3pxmUTUTMoRtYK5Kz7xXpMMLepFfKpVA/L969szVuVgs/bDjI/1b8bXYkEZELUjFSkWz/CZI2g6e/RuatANpGBzOut338mpd+3MqG/SfMDSQicgEqRioKw4A/Tg0F3eE+8A02N4+UiXu61KJXk3By8w0e/HwtJzJzzI4kInIOFSMVxY4FkLgJPP3sXb9LhWCxWHj91hbUDPHlwImTjP1qAzabOhoTEedSrGLk3XffJTo6Gm9vbzp06MCqVasKtd7s2bOxWCzcdNNNxdmtFJdhwJKJ9ul29+isSAUT6OPBewNb4+luZdG2ZKYt2W12JBGRAopcjHz55ZeMHTuW559/nrVr19KiRQt69ep1yb4C9u3bx2OPPcYVV1xR7LBSTHuXwIE14OYFHUeanUZM0KRqIC/dYB9+fOIv21m++6jJiUREzihyMfLmm28yfPhwhg0bRuPGjZk2bRq+vr58/PHHF1wnPz+fgQMH8uKLL1K7du3LCizF8Ock+3PrweAfbm4WMU3/dlHc0ro6NgMemrWO5NQssyOJiABFLEZycnKIi4ujR48eZzZgtdKjRw+WL19+wfVeeuklwsLCuOeeewq1n+zsbFJTUws8pJj+WQN7/wCrO3R+2Ow0YiKLxcL/3dSUhhH+HEnPZtSsdeTm28yOJSJStGLkyJEj5OfnEx5e8K/r8PBwEhMTz7vO0qVL+eijj5g+fXqh9zNhwgQCAwMdj6ioqKLElLOdPivSvD8E1TA3i5jOx9ON9wa2xs/LnVV7j/Hq/HizI4mIlG5rmrS0NAYNGsT06dMJDQ0t9Hrjxo0jJSXF8di/f38ppizHkrbA9vmABbo8YnYacRK1q/gx6fYWAHyybB/frjtgciIRqeiK1B18aGgobm5uJCUlFZiflJR03kFydu/ezb59++jbt69jns1mPy3s7u7O9u3bqVOnzjnreXl54eXlVZRocj5/vml/bnwjhNYzN4s4lV5NIhjVvS5Tft/FU3M3Ui/cjyZVNU6RiJijSGdGPD09adOmDbGxsY55NpuN2NhYYmJizlm+YcOGbNq0ifXr1zseN9xwA927d2f9+vW6/FKaju6GLXPt01c8am4WcUqPXFOfrvWrkJVrY8T/4tQhmoiYpsgD5Y0dO5YhQ4bQtm1b2rdvz1tvvUVGRgbDhg0DYPDgwVSrVo0JEybg7e1N06ZNC6wfFBQEcM58KWFL/wuGDer1hMjmZqcRJ+RmtTD5jpbcMGUZCccyeXj2ej4Z2g43q3MOqCci5VeR7xnp378/EydO5LnnnqNly5asX7+eBQsWOG5qTUhI4NChQyUeVIog5R/YMNs+fcVj5mYRpxbk68m0u9rg7WFlyY7DvLlwu9mRRKQCshiG4fR9Q6emphIYGEhKSgoBAQFmx3F+Pz8JK6dBzS4w7Cez04gL+G79AUbPXg/AtLvacG3Tc+8BExEpqsJ+f2tsmvIm/TDEzbRPX6l7RaRwbmxZjXu61ALg0a/Wsys5zeREIlKRqBgpb1a8B3knoWorqN3d7DTiQp7q3ZAOtYLJyMnnvs/iSMvKNTuSiFQQKkbKk5MnYPWH9ukrHgOLbkSUwvNws/LuwNZEBnqz53CGRvgVkTKjYqQ8WT0dslOhSiNo0MfsNOKCQv28mHpXGzzdrCzcmsR/f9thdiQRqQBUjJQXOZmwYqp9+oqxYNU/rRRPy6ggJtzcDIB3Fu3ihw0HTU4kIuWdvrHKi/WfQ+ZR+/gzTW42O424uFvaVOe+K+0jbD8+ZwObD6SYnEhEyjMVI+VBfh789Y59OuYhcCtyX3Yi53jy2oZ0a2DvoXX4p2tITssyO5KIlFMqRsqDrd/Cib/BNwRa3WV2Gikn3KwW3h7QijpVKnEoJYsRn8WRnZdvdiwRKYdUjLg6w4Blk+3T7e8HT19z80i5EuDtwYdD2hHo48HahBM8PXczLtBPooi4GBUjrm7P75C4ETx8of1ws9NIOVQrtBLv3tkaN6uFb9b+w0dL95odSUTKGRUjrm7pW/bn1oPBN9jUKFJ+dakXyrPXNQLg1fnx/L492eREIlKeqBhxZQfXwd4/wOIGMSPNTiPl3NBO0dzRLgqbAQ9/sY5dyelmRxKRckLFiCs7fa9I01vsTXpFSpHFYuGlG5vSPjqYtOw87p6xmqPp2WbHEpFyQMWIqzq2B7Z+Z5/uPNrcLFJheLpbmXpXa2oE+5JwLJP7PosjK1ctbETk8qgYcVV/TQHDBnWvgYimZqeRCiTEz4uPh7YjwNuduL+P8/icjRrDRkQui4oRV5R+2N7jKuisiJiibpgf0+5qg7vVwg8bDmoMGxG5LCpGXNHKaZCXBdXaQHQXs9NIBdWpbiivnjWGzZy4f0xOJCKuSsWIq8lOs4/OC9B5DFgspsaRiu32tlE82K0OAOPmbmT57qMmJxIRV6RixNWs/RSyUiCkLjS8zuw0IjzWswHXNY8kN9/g/s/WqMmviBSZihFXkpcDy9+1T3d6CKxu5uYRAaxWC5Nua0GrGkGkZqnJr4gUnYoRV7J5DqQeAL9waH6H2WlEHLw93Jg+uC1RwT4kHMtk+KdrOJmjJr8iUjgqRlyFYcCyt+3THR8AD29z84j8S6ifF5+cavK7NuEED81aR16+zexYIuICVIy4il2/weF48PSHNsPMTiNyXnXD/PlwSDs83a38Fp/Ec99v0Si/InJJKkZcxV/v2J/bDAGfIFOjiFxM+1rBvH1HSywW+GJlAlMW7TI7kog4ORUjruDQxjMD4nUYYXYakUu6tmkkL/RtAsCkhTv4avV+kxOJiDNTMeIKlk+xPze5CYKiTI0iUlhDOkXzwOk+SOZt4vdtySYnEhFnpWLE2aUcgM3f2KdjRpmbRaSInujVgJtbVyPfZvDg52tZv/+E2ZFExAmpGHF2q94HWx7U7ALVWpudRqRILBYL/7mlOVfWr8LJ3HzunrGavUcyzI4lIk5GxYgzy06DNTPs0510VkRck4eblakDW9OsWiDHMnK468OVJKZkmR1LRJyIihFntvYzyE6BkHpQr5fZaUSKrZKXOx8PbUet0EocOHGSuz5aybGMHLNjiYiTUDHirPLzYMVU+3TMg2DVP5W4tir+Xnx2T3siA73ZlZzO0E9WkZaVa3YsEXEC+oZzVvHfQ0oC+IZAiwFmpxEpEdUr+/LZPR0IruTJxn9SGP7pGrJy1W28SEWnYsQZGcaZTs7aDQcPH3PziJSgumF+zBzWHj8vd1bsOcaoL9aSq27jRSo0FSPOKGE5HFwLbl7Q7l6z04iUuGbVA/lwSFu83K38Fp/ME3M2YrOp23iRikrFiDP661QnZy3uAL8q5mYRKSUda4fw3sDWuFstzFt3gBd+0Dg2IhWVihFnc3Q3bJ9vn1YnZ1LOXd0onEm3t8BigU+X/81rC7apIBGpgFSMOJvl7wIG1L8WqtQ3O41IqbuxZTVeurEpAO//sYf/LtxhciIRKWsqRpxJxlFY/7l9WmdFpAIZ1LEmz13fGIC3F+3i7didJicSkbKkYsSZrPkI8rIgsgVEdzE7jUiZurtLLZ7u0xCANxfuYOri3SYnEpGyomLEWeRmwaoP7NOdHgaLxdw8Iia478o6PN6rAQD/WbCND//cY3IiESkLKkacxaavIOMwBFSHxjeanUbENCO712X01fUA+L+f4pn51z5zA4lIqVMx4gwM40xz3o4jwM3D3DwiJhvTox4PdqsDwPPfb+HzlX+bnEhESpOKEWewOxaObAdPf2g92Ow0IqazWCw83qsB911ZG4Bn5m3msxUqSETKKxUjzuD0gHitB4F3oLlZRJyExWJhXO+G3N25FgDjv93Mx0v3mpxKREqDihGzHd4Ou34DLND+PrPTiDgVi8XC+OsbcX9X+xmSl37cyvt/qJWNSHmjYsRsp8+KNLwOgmuZm0XECVksFp66tiEPX1UXgAk/b2PKIvVDIlKeqBgxU+Yx2DDbPt3xQXOziDgxi8XC2J4NGHuNvVfiib/u4M2FO9R1vEg5oWLETHEzIO8kRDSHmp3MTiPi9B6+uh5P9bZ3jPZ27E5e/2W7ChKRckDFiFnyc2HVdPt0xwfVyZlIIY3oWofxp7qOn7p4Ny/+sBWbTQWJiCtTMWKWrd9B2kGoFAZNbzY7jYhLuadLLV6+yT643oy/9vHo1xvIzbeZnEpEikvFiBkM49TovED74eDuZW4eERc0qGNNJt/REnerhXnrDjDisziycvPNjiUixaBixAz/rIaDa8HNC9oMMzuNiMu6sWU1PhjcBi93K7Hbkhn88SpSs3LNjiUiRaRixAwr3rM/N78N/KqYm0XExV3VMJxP726Pv5c7q/YeY8AHKziSnm12LBEpAhUjZe3Eftj6vX1azXlFSkSH2iHMuq8jIZU82XIwldunLeef45lmxxKRQlIxUtZWfQBGPtTqCuFNzE4jUm40rRbI1yNiqBbkw54jGdwy9S+2Hkw1O5aIFIKKkbKUnQ5rZ9qndVZEpMTVruLH1yNiqBfmR1JqNre/v5ylO4+YHUtELkHFSFnaMAuyUiC4NtTraXYakXKpapAPc0Z0okOtYNKz8xj6ySq+ifvH7FgichHFKkbeffddoqOj8fb2pkOHDqxateqCy06fPp0rrriCypUrU7lyZXr06HHR5cstm+3MODQdHgCr6kCR0hLo68Gn97Snb4uq5NkMHv16A1MW7VRvrSJOqsjfiF9++SVjx47l+eefZ+3atbRo0YJevXqRnJx83uUXL17MgAED+P3331m+fDlRUVH07NmTAwcOXHZ4l7JrIRzbDV6B0PJOs9OIlHte7m5M7t/SMeLvxF938PS8TeSpczQRp2MxivinQocOHWjXrh1TpkwBwGazERUVxUMPPcRTTz11yfXz8/OpXLkyU6ZMYfDgwYXaZ2pqKoGBgaSkpBAQEFCUuM7j0xthz2Lo9BD0/D+z04hUKJ8u38fz32/BMKB7gyq8PaAV/t4eZscSKfcK+/1dpDMjOTk5xMXF0aNHjzMbsFrp0aMHy5cvL9Q2MjMzyc3NJTg4+ILLZGdnk5qaWuDh0pK22gsRixXa32d2GpEKZ3BMNNPusneO9vv2w9w6dTn7j6npr4izKFIxcuTIEfLz8wkPDy8wPzw8nMTExEJt48knn6Rq1aoFCpp/mzBhAoGBgY5HVFRUUWI6n5Wn7hVp1BeCapibRaSC6tUkgq/ujyHM34vtSWnc9O4yVu87ZnYsEaGMW9O89tprzJ49m3nz5uHt7X3B5caNG0dKSorjsX///jJMWcIyjsCGL+3Tas4rYqoWUUF8N6ozTaoGcDQjh4HTVzJHLW1ETFekYiQ0NBQ3NzeSkpIKzE9KSiIiIuKi606cOJHXXnuNX3/9lebNm190WS8vLwICAgo8XNaaTyA/G6q2hqgOZqcRqfAiA334ekQMvZtGkJNv47GvNzDh53jybWppI2KWIhUjnp6etGnThtjYWMc8m81GbGwsMTExF1zv9ddf5+WXX2bBggW0bdu2+GldTV4OrP7QPt3xQbBYzM0jIgD4errz7p2teeiqugC8/8ce7v8sjvTsPJOTiVRMRb5MM3bsWKZPn87MmTOJj4/ngQceICMjg2HD7KPPDh48mHHjxjmW/89//sP48eP5+OOPiY6OJjExkcTERNLT00vuUzir+O8hPRH8IqDxjWanEZGzWK0WHu3ZgMl3tMTT3cpv8UncOGUpu5IrwO8mESdT5GKkf//+TJw4keeee46WLVuyfv16FixY4LipNSEhgUOHDjmWnzp1Kjk5Odx6661ERkY6HhMnTiy5T+GsVk6zP7e7B9w9zc0iIud1Y8tqfHlfRyICvNl9OIOb3l3Ggs2FuyFfREpGkfsZMYNL9jNyIA6mXwVunvDIFvALMzuRiFzE4bRsRn2xlpV77S1sHuxWh0d7NsDNqsurIsVVKv2MSBGs/MD+3ORmFSIiLqCKvxf/u7cD93apBcB7i3cz9JNVHM/IMTmZSPmnYqQ0pCXB5m/s0x3UyZmIq/Bws/Ls9Y15e0ArfDzc+HPnEfpOWcrmAylmRxMp11SMlIa4GWDLhertoVobs9OISBHd0KIq80Z2omaIL/8cP8nN7/3FzL/2aaA9kVKiYqSk5eXAmo/t0x3uNzeLiBRbw4gAvh/VhZ6Nw8nJt/H891sY8b84UjJzzY4mUu6oGClpZzfnbXSD2WlE5DIE+njw/qA2PN+3MR5uFn7ZksR17/zJuoTjZkcTKVdUjJS00815296t5rwi5YDFYmFY51p880AnagTbL9vcNm0505fswaZeW0VKhIqRknQgDv5ZDVYPaDvM7DQiUoKaVw/ix4e7cF3zSPJsBq/Mj+eemas5nJZtdjQRl6dipCSdbs7b9BY15xUphwK8PZgyoBWv9GuKp7uV37cfptdbS/h1izpJE7kcKkZKSnqymvOKVAAWi4WBHWryw6guNIzw51hGDvd9FseTczZqbBuRYlIxUlIczXnbqTmvSAXQIMKf70Z15v6utbFY4Ms1++kz+U/i/j5mdjQRl6NipCTk5cDqj+zTHUaYm0VEyoyXuxvjejdi1vCOVAvyIeFYJrdNW84bv2wjJ89mdjwRl6FipCQ4mvOGqzmvSAXUsXYIP4+5gptbVcNmwLu/7+aGKUvZ+M8Js6OJuAQVIyVh5fv257YanVekogrw9uDN/i15b2Brgit5si0xjZveXcaEn+PJys03O56IU1MxcrkOxME/q9ScV0QA6NMskoWPXMkNLapiM+D9P/bQZ/KfrN6ne0lELkTFyOVyNOfV6LwiYhfi58XbA1oxfXBbwvy92HMkg9vfX84L328hQy1uRM6hYuRypCfDlrn2aY1DIyL/ck3jcBaO7crtbatjGDDjr31c8+YfLNicqEH3RM6iYuRyxM2A/Bw15xWRCwr08eD1W1vw2T3tiQr24WBKFiP+F8c9M9ew/1im2fFEnIKKkeI6uzlve50VEZGLu6JeFX4d05VR3evi4WZh0bZkerz5B1MW7SQ7Tze4SsWmYqS4zm7O2/hGs9OIiAvw8XTjsV4N+Hn0lXSqE0J2no2Jv+6g9+Q/WbbriNnxREyjYqS41JxXRIqpbpgfn9/bgcl3tCTUz4s9hzMY+OFK7vt0DfuOZJgdT6TMqRgpjgNrzzTnbTPU7DQi4oIsFgs3tqxG7KNdGdopGjerhV+3JnHNf//g1fnxpGblmh1RpMyoGCmOVWc15/UPNzeLiLi0QB8PXrihCQtGX8GV9auQm2/wwZI9dH9jMV+sTCDfplY3Uv6pGCmqjCNnRufVjasiUkLqhfvz6d3t+WRYO+pUqcTRjByenreJ697+k9+3JaspsJRrKkaKau2n9ua8VVtDdTXnFZGS1b1BGAvGXMkLfRsT6OPBtsQ0hs1YTf8PVmhEYCm3VIwUhS0f1nxsn24/3NwsIlJuebhZGdq5Fn883o37r6yNp7uVVXuPccvU5dw7cw3bE9PMjihSolSMFMWOBZCyH3yCocnNZqcRkXIuyNeTcX0a8cfj3bijXRRWC/wWn8S1k5cw9qv1JBxVp2lSPqgYKYpV0+3PrQeBh7e5WUSkwogM9OG1W5rz6yNd6dMsAsOAuWsP0H3SYh77egN71RxYXJzFcIG7olJTUwkMDCQlJYWAgABzQhzZCVPaAhYYvQEq1zQnh4hUeBv2n2DSwh0s2XEYAKsFbmpZjZFX1aVOFT+T04mcUdjvb50ZKazVH9qf61+rQkRETNUiKohP727PvAc70b1BFWwGzF13gB5v/sHDs9axI0n3lIhr0ZmRwshOhzcbQXYq3PUN1O1R9hlERC5g4z8neDt2F7/FJznmXdUwjOFX1KZj7WAsFouJ6aQiK+z3t3sZZnJdG7+0FyLBdaD2VWanEREpoHn1ID4c0pbNB1KYsmgXv2xNZNG2ZBZtS6Z59UDuu7I21zaJwN1NJ8PFOenMyKUYBkztBMlbodcEiHmwbPcvIlJEe49k8OGfe5gT9w/ZeTYAooJ9uKdzLW5rG0UlL/0dKmWjsN/fKkYuZd8ymNEHPHxhbDz4BJXt/kVEiuloejafLv+bT5fv43imfawbfy93bmlTnUExNXWzq5Q6FSMl5euhsGWefUC8vpPLdt8iIiXgZE4+c9b+w8dL9xZoBtylbiiDYmpydcMwXcKRUqFipER2fAjeagq2PBixDCKalt2+RURKmM1m8OeuI3y2fB+x25I5/du/WpAPd3aowW1tqxPmrz6UpOSoGCkJv0+AP16DGjFw94Ky26+ISCnbfyyTz1cm8OXqBMclHDerhe4Nwri9bXW6NwzDQ2dL5DKpGLlceTn2syLpSXDrx9D0lrLZr4hIGcrKzefHjYf4YuXfrE044Zgf6ufJza2rc3vb6tQN8zcvoLg0FSOXa/M3MOdu8AuHMZvB3bNs9isiYpJdyel8vWY/36w9wJH0bMf8VjWCuKllNfo0i6SKv5eJCcXVqBi5XB/3hoS/oOuT0P3pstmniIgTyM23sXj7Yb5as59F25LJt9m/JqwW6Fw3lBtaVKVX0wgCvD1MTirOTsXI5UjcDNM6g9XdflYkILL09yki4oQOp2Xz48aDfLf+IOv3n3DM93S30r1BFW5oUY3uDavg66m+S+RcKkYux4+PwJqPofFNcPvM0t+fiIgL+PtoBj9ssBcmO5PTHfO9PaxcUa8KvZpEcHXDMCpX0mVtsVMxUlzZ6TCpIeSkweDvoXbX0t2fiIiLMQyDbYlpfLf+ID9tOsj+Yycd77lZLbSPDqZXk3B6NomgapCPiUnFbCpGiituBvwwGkLqwqg1oAGmREQuyDAM4g+l8cuWRH7Zksi2xIIjBjeODKBbgyp0rV+F1jUrq7lwBaNipLjevxIObYCe/wedHirdfYmIlDMJRzMdhUlcwnHO/obx93anS93QU8VJGBGB6mCtvFMxUhwH1sL07uDmCWO3QaWQ0tuXiEg5dyQ9mz93Hmbx9sMs2XHY0bnaaQ0j/OlUJ5SYOiG0rxVMoI9a55Q3KkaK47tRsO4zaHY73DK99PYjIlLB5NsMNv5zgsXbD/PHjsNs+OdEgbMmVgs0qRpITJ0QYuqE0C46GD+NLuzyVIwUVVaK/cbV3EwY9jPU7FQ6+xEREY5l5LBs1xGW7znKit1H2XPWAH5gvxG2abVA2tSoTJua9ocu67geFSNFtWo6zH8MQhvAyJW6cVVEpAwlpmSxfM8Rlu8+yvI9Rwu00DmtWpAPrWtWpk2NINrUDKZhpL9uiHVyhf3+1jkwAMOANZ/Yp9verUJERKSMRQR6069Vdfq1qg7YB/KL+/s4axOOE/f3ceIPpXLgxEkOnDjJDxsOAuDlbqVRZADNqgXStFoATasFUj9cBYorUjECcHAdJG8Bd29o0d/sNCIiFV5UsC9Rwb7c1KoaABnZeWzYf8JRoKxNOEHKyVzW7z9xTs+wjSL8aVotkKbVAmkUGUC9MD8q6f4Tp6Z/HYANs+zPDa8Dn8rmZhERkXNU8nKnU91QOtUNBcBmM/j7WCabDqSw+dRj04EU0rLy2PBPChv+SSmwfo1gX+qH+9Mgwu/Usz+1Q/3wdNdZFGegYiQvBzbNsU+3uNPcLCIiUihWq4VaoZWoFVqJG1pUBewdsCWcKlA2HUhhy4FUtielcTgtm4RjmSQcy+S3+CTHNtxPbaNOFT9qVbFvq/apbQZX8sSiS/ZlRsXIzl/h5DHwC4fa3cxOIyIixWSxWKgZUomaIZW4vnlVx/xjGTlsT0xjR1Ia25PS2JFof07LymNncnqBcXZOC/B2p1YVP2qF+FIr1I/oUF+qV/YlKtiHKn5eKlRKmIqR05domt8ObjocIiLlTXAlT0f/JacZhsGhlCy2J6Wx93AGe49ksO9oBnsOZ3Aw5SSpWfZ7VDacdT/KaV7uVqpV9qF6ZV+qV/Y59bBPVwvyIdTPCzeripWiqNjfvjkZsHOhfbq5blwVEakoLBYLVYN8qBrkQ/cGBd/Lys3n76OZ7D2Szt4j9ud9RzM5cPwkh1JOkp1nY89he+FyPm5WC1X8vAgP9CYiwIvwAG/CA7yJCPAmItCb8FPz/L3V4+xpFbsY2fMH5GdDYA0Ib2p2GhERcQLeHm40iLDf5Ppvufk2ElOy2H88k3+On7Q/jp2eziQxNYt8m0FiahaJqVlsuMh+fDzcCPHzJKSSJyF+Xv96LjgdXMkTL3e30vvQJitWMfLuu+/yxhtvkJiYSIsWLXjnnXdo3779BZf/+uuvGT9+PPv27aNevXr85z//oU+fPsUOXWJ2LLA/N7hWfYuIiMglebhZHc2Ozycv38bRjBwSU+zFSNKpR2JKtv351Ou0rDxO5uY7CprC8PV0I8jHgwAfDwLPegT5npkO8PEgyNfT8drf2x0/L3e83K1OfZ9LkYuRL7/8krFjxzJt2jQ6dOjAW2+9Ra9evdi+fTthYWHnLP/XX38xYMAAJkyYwPXXX88XX3zBTTfdxNq1a2na1MSzEYZx5hJN/V7m5RARkXLD3c3quCzT4iLLZWTncTQ9hyMZ2RxNz+FoejZHM3Ls06fmHUnP5lhGDkczcsi3GWTm5JOZk8/BlKyi57Ja8DtVmDge3u5U8nLH/9TrQTE1qRlSqfgf/jIUuTv4Dh060K5dO6ZMmQKAzWYjKiqKhx56iKeeeuqc5fv3709GRgY//vijY17Hjh1p2bIl06ZNK9Q+S607+NSDsOMXaDEAPDTmgYiIOB+bzSA1K5cTmbmknDzzOHEyl9TTrzPPPz89O6/Q+5n3YCda1SjZvrZKpTv4nJwc4uLiGDdunGOe1WqlR48eLF++/LzrLF++nLFjxxaY16tXL7799tui7Lp0BFSFtsPMTiEiInJBVquFIF9Pgnw9i7yuzWaQkZNHenYeGdl5pGXZp9NPP581XTXIpxTSF06RipEjR46Qn59PeHh4gfnh4eFs27btvOskJiaed/nExMQL7ic7O5vs7GzH69TU1KLEFBEREeyFjL+3h9O33HHKfnAnTJhAYGCg4xEVFWV2JBERESklRSpGQkNDcXNzIykpqcD8pKQkIiIizrtOREREkZYHGDduHCkpKY7H/v37ixJTREREXEiRihFPT0/atGlDbGysY57NZiM2NpaYmJjzrhMTE1NgeYCFCxdecHkALy8vAgICCjxERESkfCpy096xY8cyZMgQ2rZtS/v27XnrrbfIyMhg2DD7jaCDBw+mWrVqTJgwAYDRo0fTtWtXJk2axHXXXcfs2bNZs2YNH3zwQcl+EhEREXFJRS5G+vfvz+HDh3nuuedITEykZcuWLFiwwHGTakJCAlbrmRMunTp14osvvuDZZ5/l6aefpl69enz77bfm9jEiIiIiTqPI/YyYodT6GREREZFSU9jvb6dsTSMiIiIVh4oRERERMZWKERERETGVihERERExlYoRERERMZWKERERETGVihERERExVZE7PTPD6a5QNHqviIiI6zj9vX2pLs1cohhJS0sD0Oi9IiIiLigtLY3AwMALvu8SPbDabDYOHjyIv78/FoulxLabmppKVFQU+/fvV8+upUzHumzoOJcNHeeyoeNcdkrrWBuGQVpaGlWrVi0wVMy/ucSZEavVSvXq1Utt+xoZuOzoWJcNHeeyoeNcNnScy05pHOuLnRE5TTewioiIiKlUjIiIiIipKnQx4uXlxfPPP4+Xl5fZUco9HeuyoeNcNnScy4aOc9kx+1i7xA2sIiIiUn5V6DMjIiIiYj4VIyIiImIqFSMiIiJiKhUjIiIiYqoKXYy8++67REdH4+3tTYcOHVi1apXZkVzGhAkTaNeuHf7+/oSFhXHTTTexffv2AstkZWUxcuRIQkJC8PPz45ZbbiEpKanAMgkJCVx33XX4+voSFhbG448/Tl5eXll+FJfy2muvYbFYGDNmjGOejnPJOXDgAHfddRchISH4+PjQrFkz1qxZ43jfMAyee+45IiMj8fHxoUePHuzcubPANo4dO8bAgQMJCAggKCiIe+65h/T09LL+KE4rPz+f8ePHU6tWLXx8fKhTpw4vv/xygbFLdJyLZ8mSJfTt25eqVatisVj49ttvC7xfUsd148aNXHHFFXh7exMVFcXrr79++eGNCmr27NmGp6en8fHHHxtbtmwxhg8fbgQFBRlJSUlmR3MJvXr1Mj755BNj8+bNxvr1640+ffoYNWrUMNLT0x3LjBgxwoiKijJiY2ONNWvWGB07djQ6derkeD8vL89o2rSp0aNHD2PdunXG/PnzjdDQUGPcuHFmfCSnt2rVKiM6Otpo3ry5MXr0aMd8HeeScezYMaNmzZrG0KFDjZUrVxp79uwxfvnlF2PXrl2OZV577TUjMDDQ+Pbbb40NGzYYN9xwg1GrVi3j5MmTjmWuvfZao0WLFsaKFSuMP//806hbt64xYMAAMz6SU3rllVeMkJAQ48cffzT27t1rfP3114afn58xefJkxzI6zsUzf/5845lnnjHmzp1rAMa8efMKvF8SxzUlJcUIDw83Bg4caGzevNmYNWuW4ePjY7z//vuXlb3CFiPt27c3Ro4c6Xidn59vVK1a1ZgwYYKJqVxXcnKyARh//PGHYRiGceLECcPDw8P4+uuvHcvEx8cbgLF8+XLDMOw/OFar1UhMTHQsM3XqVCMgIMDIzs4u2w/g5NLS0ox69eoZCxcuNLp27eooRnScS86TTz5pdOnS5YLv22w2IyIiwnjjjTcc806cOGF4eXkZs2bNMgzDMLZu3WoAxurVqx3L/Pzzz4bFYjEOHDhQeuFdyHXXXWfcfffdBebdfPPNxsCBAw3D0HEuKf8uRkrquL733ntG5cqVC/zuePLJJ40GDRpcVt4KeZkmJyeHuLg4evTo4ZhntVrp0aMHy5cvNzGZ60pJSQEgODgYgLi4OHJzcwsc44YNG1KjRg3HMV6+fDnNmjUjPDzcsUyvXr1ITU1ly5YtZZje+Y0cOZLrrruuwPEEHeeS9P3339O2bVtuu+02wsLCaNWqFdOnT3e8v3fvXhITEwsc68DAQDp06FDgWAcFBdG2bVvHMj169MBqtbJy5cqy+zBOrFOnTsTGxrJjxw4ANmzYwNKlS+nduzeg41xaSuq4Ll++nCuvvBJPT0/HMr169WL79u0cP3682PlcYqC8knbkyBHy8/ML/HIGCA8PZ9u2bSalcl02m40xY8bQuXNnmjZtCkBiYiKenp4EBQUVWDY8PJzExETHMuf7Nzj9ntjNnj2btWvXsnr16nPe03EuOXv27GHq1KmMHTuWp59+mtWrV/Pwww/j6enJkCFDHMfqfMfy7GMdFhZW4H13d3eCg4N1rE956qmnSE1NpWHDhri5uZGfn88rr7zCwIEDAXScS0lJHdfExERq1ap1zjZOv1e5cuVi5auQxYiUrJEjR7J582aWLl1qdpRyZ//+/YwePZqFCxfi7e1tdpxyzWaz0bZtW1599VUAWrVqxebNm5k2bRpDhgwxOV358dVXX/H555/zxRdf0KRJE9avX8+YMWOoWrWqjnMFViEv04SGhuLm5nZOi4OkpCQiIiJMSuWaRo0axY8//sjvv/9O9erVHfMjIiLIycnhxIkTBZY/+xhHRESc99/g9HtivwyTnJxM69atcXd3x93dnT/++IO3334bd3d3wsPDdZxLSGRkJI0bNy4wr1GjRiQkJABnjtXFfm9ERESQnJxc4P28vDyOHTumY33K448/zlNPPcUdd9xBs2bNGDRoEI888ggTJkwAdJxLS0kd19L6fVIhixFPT0/atGlDbGysY57NZiM2NpaYmBgTk7kOwzAYNWoU8+bNY9GiReectmvTpg0eHh4FjvH27dtJSEhwHOOYmBg2bdpU4D//woULCQgIOOdLoaK6+uqr2bRpE+vXr3c82rZty8CBAx3TOs4lo3Pnzuc0T9+xYwc1a9YEoFatWkRERBQ41qmpqaxcubLAsT5x4gRxcXGOZRYtWoTNZqNDhw5l8CmcX2ZmJlZrwa8eNzc3bDYboONcWkrquMbExLBkyRJyc3MdyyxcuJAGDRoU+xINULGb9np5eRkzZswwtm7datx3331GUFBQgRYHcmEPPPCAERgYaCxevNg4dOiQ45GZmelYZsSIEUaNGjWMRYsWGWvWrDFiYmKMmJgYx/unm5z27NnTWL9+vbFgwQKjSpUqanJ6CWe3pjEMHeeSsmrVKsPd3d145ZVXjJ07dxqff/654evra/zvf/9zLPPaa68ZQUFBxnfffWds3LjRuPHGG8/bNLJVq1bGypUrjaVLlxr16tWr8E1OzzZkyBCjWrVqjqa9c+fONUJDQ40nnnjCsYyOc/GkpaUZ69atM9atW2cAxptvvmmsW7fO+Pvvvw3DKJnjeuLECSM8PNwYNGiQsXnzZmP27NmGr6+vmvZejnfeeceoUaOG4enpabRv395YsWKF2ZFcBnDexyeffOJY5uTJk8aDDz5oVK5c2fD19TX69etnHDp0qMB29u3bZ/Tu3dvw8fExQkNDjUcffdTIzc0t40/jWv5djOg4l5wffvjBaNq0qeHl5WU0bNjQ+OCDDwq8b7PZjPHjxxvh4eGGl5eXcfXVVxvbt28vsMzRo0eNAQMGGH5+fkZAQIAxbNgwIy0trSw/hlNLTU01Ro8ebdSoUcPw9vY2ateubTzzzDMFmorqOBfP77//ft7fy0OGDDEMo+SO64YNG4wuXboYXl5eRrVq1YzXXnvtsrNbDOOsbu9EREREyliFvGdEREREnIeKERERETGVihERERExlYoRERERMZWKERERETGVihERERExlYoRERERMZWKERERETGVihERERExlYoRERERMZWKERERETGVihEREREx1f8DeQIRkuyuzGgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(noise_scheduler.alphas_cumprod.cpu() ** 0.5, label=r\"${\\sqrt{\\bar{\\alpha}_t}}$\")\n", + "plt.plot((1 - noise_scheduler.alphas_cumprod.cpu()) ** 0.5, label=r\"$\\sqrt{(1 - \\bar{\\alpha}_t)}$\")\n", + "plt.legend(fontsize=\"x-large\");" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dRuwInQcyfSQ" + }, + "source": [ + "**Exercise:** You can explore how this plot changes with different settings for beta_start, beta_end and beta_schedule by swapping in one of the commented-out options here:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "KXDGwKRJyK_s" + }, + "outputs": [], + "source": [ + "# One with too little noise added:\n", + "# noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_start=0.001, beta_end=0.004)\n", + "# The 'cosine' schedule, which may be better for small image sizes:\n", + "# noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='squaredcos_cap_v2')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D0uCdW7UzTvB" + }, + "source": [ + "Whichever scheduler you've chosen, we can now use it to add noise in different amounts using the `noise_scheduler.add_noise` function like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 98 + }, + "id": "0IPVOilDdzVa", + "outputId": "66e73c49-99a7-4004-b3fd-c889a2304339" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noisy X shape torch.Size([8, 3, 32, 32])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAABACAIAAADj3VjoAAB1OklEQVR4nOzd9YNV1fv28deeobtLRKQ7BUVCaQQBKSkplRIFkRBspEUBBSQEJKQV6ZCSDinp7ka6YWb28wPm5094vvP+YWbOzDlnX/tae87a91r3uhexxBJLLLHEEkssscQSSyyxxBJLLLHEEkssscQSy/+PBP9+EB3GICIaMYiOCBApAjEBhI+fIAKCGATRgcgQocdPCCAIECH8+yWCSMT89cTIx4cNoxEGAWKiA0RGPv45mjgQGYObVy7j0N5tOL5tJS6fO4usOfKjZruPH4u/NGMwPrqZGS1/v4tSTR5iZ+omKBIv8a2sW3BOJtyTGUXAjW8h+VsLce3sHaR8lEnqMpjdDCI/htTFj6CMy7j+0xNIUXo9ZKjDQow9VA/lckGuebCs/HSUnzwPLeI9F3/CKnR4OiOKN72P4KXv/zb/x+4LcHFgMbwVfDHul6Fo2rgzEsysjEEV7uLK5dtokrY+omcfKpprH17Kcwp54vREsbnw6skFWHEpRPU+k6DBDLke4pW+rVFme1d0LVYYs0ADYxH89ibCQ+zehGUDn8O0G/BgHkxJeBROZ0fQ+c/rZ8KaT5Au78+YmGYXpm8vhfGTN+LIPui/9PP2r05E9gS30GXSNmzxJC7ly42e+frhtY71XywXolPtmtg8dz5uBKuQbFAFBF1/APsQtiuqXgN8cjjE0D41ML5hQdQf+ht+HLgCDd5/FxmGDD3f+B20X1UAoxq3+9v8FQdDDM49HAszxQtfbYs9L1ZF89rLsMZydA3KI0Puyfjsj0f4bdBzJT7PBykhWF0E92qcRcK1l9HDSfTfeg3flc2W/IVeCOt8hT3PtEefYiMRvrIe/W99gb0ryk3RBT8kPYo2OV7B3R278dXOF/DBB2vwYPGf4scO2Iw3epzFmnF18dvrtZF82Vw8fa8oKtXaMfDrAkg/bw9aDuqEOsFQ3EsVg+Y7hmFIlR34beiEah/2wpLlEQgrfY+y4TGsnQ7RW15FoXeeQbLJQzd/eg77RgbIfCBE0sR/4OlS7VC+5jIM0DBt3/gY3D8Putx++2/zS2QNsWXWRyizpS3id3jyl7A2fjt8FLeudEKt/luxt9Rx3O75K36Y9rBCvkmYWaMNxp9OgMuuI22QB6MdQGAm2va9VX5iPiQZ9RX6pPgRLy4OcDUmCxxbhMHjC+DHINxgAgKt0Onj55Chxl4see4WVv8lPk/Dinh7RnJELP4JiU5Pw64CybD8vfj4fVMlBG199HtfdO+WCZ+1bIWfOu1A/HarUa1JHQw5ceaHk2XQfA28cXM7qsUvhuuL5+PnLW2wqPV5HHvGhgXT0Ofp4/glzgeomyJE/QorsGtsJrzWujWqW3+y1JvIunHs3+b/pwM4vGcjzh/+PXHKlMjwZC6kTpcN8RMnQUwQgcfdw18/hUE0hBEBIv78ZA8QE4QIRCAUIiIm+PNlYfjXFzExAYKIEBGPO4PA/Zs38duGFVi3aAbOnziIiEf3kCJ5EqTLmBrvDP3lsfgvKldF37VLoRm8nSYpBs/9Bnfr3bxdsyNWljiLWsbisreQdnladKr0AM/6HE30/fNDseJGtExVCv1u30PEjJvI8EZ6sBf+yG/rWYh8iJNpn8bJw71xbWoknt48DoXPBxV+L46shVOj7ql7eDnLhL/N/zUvjN5fA3m3Jhj54sc4164LKuRejlX3R2PsE0nxRp2s4Nqo2idxcWJVxKzNjvTd4a2vb0Hn73BleQ2sypi7ftuB+Lrc+6j3aAROlO+AX27vwKf5V6PGE+2RrH+VKue/xJu3hsPFFhjR8Tc0/DUR0jRoiiBj6j/VPwhxuM8pfPD5HsxUA0sGrMVLmcsi/L5/sLIxyj34EW3j5cfqoBo2hItR7FEitOxYsvz++vDrDGj2IWImp0ffLB8g3cjZOFTjReR/dmDJDwciXuKdyFmxCCKGBCi3IUT6RQkQv2QjvL5qdSfH0SYdvHP5n4v/m/tfo+cHnbBzsAI+wdzwN1T1KsaUaok2leBW3QBbIgchz/Cat8fsRM31Y1Bl2UoM/6wFfruaDW1Tp8SFfu9gbc8fc8uJ6MFDUP27CbiZeR12/9oT/aNqYqKfXx3bBfkiGuDq8s5oWmAIUjS6j+snFkCF+n/JD/HbKCjRdj70jEZ4/hUE37RGWP4725thSDgHnX/dhCSfzcZv0R+j560CmLvzOL64fyem0BfocTgK09J9iDebV8CdEfUwd9dU1JqwDn4b7r0YrKz2CBUKd0GfnQGWj0+DX1+fhL1Nzm35qidyPrUCZR8V+tv8xx8E8Y4EKJ4fNvYPi608hu0/NMHCcW9jw861WL9jF1Y9UwAlJ4z9OXV6VL7SFQmLdUOWZiESvvcxLoXpkD54BzPOiCqxC/HPFcJrvsSbi1IhT7o3MHHEKDyx7ioajJuQ54XxeK1IGbwyqj9mP9sQn9aJB3MyP9b+QQ9o3x8yByuwPWyEdZV+QvLlxZC/wXJU//GV3vu+R+s/tqJx2WzIMng+BnUZgXO/1kWmFw8+NuRazu1IeXgA8tWOQrFcs9H0y8LIqj0yzIuTqv8q1Ng4BQt310OGgj/hvJfg9hKUiwdrPx8Q9r6GIBj4t/cRYoklllhi+T/JfyKA6V90xLFDO+/cvY8ECRMiaaqnUfSFKihcugqSJU/5z2uDIIgJIQj/9a6Pb/Aj/z7AX9FA8NfxYhD+GRzEICLm8bBSNC4cPz5z0jdYtXA+4kQ8whPpkiFt2ox49OAOsj6VHa36T338ju2/fBUFus5EhfpZ0O+JLEi7+zZOxLlapMEpfHD/JiJPJ4WBD2HnQygyEVTGVwszdalxD/5Ii2HhPdT/fTEyps2CR5mLI6612NqnnIqTEC93dWTImQYbqgfYeq8Lpp5diFfiJzxRZgeeWgplCsxF/fm1//ZsxIoEuF9xPt4Lj3f/YiqaTqmGwnt6oGjbEDvaLsO2HNtQPHGZ7u+WwcGXbqJzuc1I3KcyzvdtjjuqovHmpnit8LEfEpxF/339cHbVYgzq0BPz9EcusHfCILzWsuDsmu2wKdEUPDxeBhEJYX26hEhcKS9Wtdv+WPwnC0P0OgmTMzxEtjrxUK0HvF61D57oXSbuyrfRuVsbbH3xY4Qvj8K6PpnRp9ZFXCn4ja5rUO7Lr7FmRUPciVqGHUWa4+c7Ib66BrLPfS9FbaR46mdMbHMBT33YGisPlEevZM9gcoEhKNDs9s9pkiCoA0HBfy7+Y3sqIdsfy3FqS/uH3bsix7jsaJImxJTaDzFgRVp8Ofsm8p+uiFZz07SsNgOzZ23CzNmH0a3cayh2dToe3nkdCUY2xuzpBequ7YE5o4ZiT9P2+DBJawQvpkBYpxr8+EFUqs2I81pdNPjjZ8zavwD7D6bCzrtX0SR4+bH4+mF6zPruBFa2SYC7ZXeh5rxE+PlUTtws3PHB6QRoU3wgIi9WRVTwCwInEbZPipPTBiPujVHFY0Yjbu16eOflb9C9f0cUag6J8oTY2GgrNLswckdRPLUnI5r2mYHFKaah1NtpYc4hdHxl79cLrsLh1Ajeu/q3+eGJfaizeijmzB+BJxrGvdm6HV7KOwpvbjiKOW2bosPoWrhZuzBK7a/e5nBVNHrhE1T4NQ3C596Gfh1wrOIrCMLqeNqi26sDJL0Fj2pOR5ywIa5vT4FucdZi7MBMWLi84PuXLqCVFejy9XGUW7oPJTvvwpeVl/2pftAKuFwBNc90x4n0cZD+52tY/lMSlC22Db8GqyJCGH0sxMNs0NExLHQaD4JhqJM7Q8VTM1F28iXsuAM1iwR48wSMqN4ESeJOQQsJg3Al1hqDI55AMDQ9qu/uiHfHf4RD2ypg65AKnSenw5Dg0t/mx0YAscQSSyz/R4nz7weR8RMjTihhnLi4d+cuDh9Zg3Xr1iFv4blo9PpbyFWkNCLjRooIEcYE/poKvnPtBuIkiIMECZMiInz815hbN2/jUcx9pEieDkFEBGJiorBn52aM/6rPmVNHECkaqRIlQdKkyZA2XWqcO3MD6Z7O/W/xhSfMRJcudXHn0lH02fE6Uh9fjgq15o+73RGr/2iGiDqD8eKZbPBbHCwv0AFxzp5GlwMD1eiNG2ngnZk7cSxpXUxLexVPp/4G+W51woYhZ+NdaI4r+3cgZsVyrMuTGelyp0Wz4u0R9en1g41/R+1RMdjYLQbm/6O/w+B2OHM0DwKV+73xLZZ2z4vCr/TBF9+CS1Vw7dy7CPZenxvnJL54YQ42JuiEEn17guxgJTxbDj+EP7fQBRPzJYNFUdijP7ZWWoyUyx/htdPdsC9QNzyJ9d88QnB1GFIsH43xn+9BhRvrQcLH4u9+1QyKfIRm2TJj5LPL8N3yGngt6ce4XN6j3iHuns6GSy0aI2Z8Y1Q7ECBqUIigbP3wy0/QKaiCb6dnwN6GzbAoSIQBJmPGGy/g0pzaQ/pMxuDSzbB3TyIM9ikGzS2BEe8XwLKyv+PH8jf3nyuH+avf8l+ynf4ZYbV2sL+UY58h6R+wcvLjLIOH+GVfM1zJMwIPMk5Ey88GOAsvf/ssKqx+Dq8vr4+8k1sh2ewtKDWwELZGffyg7APEeybAlepNQQ10G/MKmrV5H+8FW9a+HWDI2pcxrevLeDt9DUzqH6Bomjr/Ft9n0w8IWp/BhdY5UXzVq3j7UG3k+aIF4rZ+tk3aH3B14adIlekPTB4fotLrzRH33mRE1a+Ns/tbT6lfF5nnjsDKOd+h07pEWNK8Pn7v9QHWFeuKCT80u2gYZn54Cile24w2+Tvi8Jjq+OTGIzz7ils192NQmmfBX1PYBGMiEPYtg9OjZiHLwTE3f22NpNk/hKAasp3cgw9ebIUZv/bEF4Huby7FwI0Bwq6w7q1IbKqQHVlv18AXQVr89mpbM6HcN08g8aWGKFyhFrYUq43JX32GoeFxDF11rkaFRHjvqXZ4b++H2JHlSwyu/J9RkzQnR+L54RcwN6yDXR27Icu0Z5Gy+CA8t2M2+qY40jL4FO1KBZhw/zuM2r4fG25PwkaX8eWarG3TXcfgYA627N6Hj443xdpaO9Bh6RuYbxqCX0LtJ6LR4u9x9uAkhAt+Q3AwxEsuYG6+oWgxOazaPMCQf+mPjQBiiSWWWP6P8p8IIFP2PDi6Y33qtOlw6ep1xI97HffvP8DRA7vRu+fbaNC8LarVb54wUWKEj7NCg0jci36IeHejkSB+YsRERiCMibh39w5iImL8lTIUHYbYt20zhvR6H+cunq5QuiiuXb+Ka5eu4NKlq4h59MCfeaKSp8jwb/E/1qqErEeeQtv6s7EnbxSeGtQIT+eeNDv+19iSYix2ZjiPh7KhStUYbI5zF1WfisaYLj2KjoL77Q4gzatx8BSotigutmR6CyeTQrXbybdnmIxUl5Lg9zvX0KtkHcQfmQvr1s5Hzrcj935SCGtbZkGiW8n+pyXGx2uPwvkbo0e2MXv3tsEPm7/Dz50vIs6OcZhRdCkaNfkGv/2x4tWdu1BLMWzfDh8V64tkIvDzuQtYmykDIoIrQw7DzZwzMLjbUXxWLDsunUyGF47/gC8a10L328mDoy0R7rkLywqjbbAH3w1tgDQvDsXfQ4nRKyajpc8x4YlP0f5SY9RJegbnL+5Ayqmlp356AU1jCiIs/D6ea5ED7weHcS7iI4Ttuvea8Dk6fZURK4rUwFvBWPw+6xVMOB+JZu88gxOdtz2Rfyfea1cLq2uMQ4eYRPixaVdc3nQSO7u8gS1Ry/6YFGLUuK/hn0REI8dVhW+Pouy7M5N+vgIbVlREnztDYMddrMx1GMHt+9i0Ij4cHrZ9z5vouCAaP/YIMbtqf3Tdmgnv1y2IaudDPGxk3ixoEGREGCZHE3C29DaUqTcQxaYvHvVmTpxInA3PvXYdpULImBve/fpnrHntT/H5SkEY9sXuJ7bgzNmSCLLMRO/ZUKJEhSPZXkPKHikw/NwbaCZA81Z9sejrT3Cy8gkk2pq1QvNfESd4B+fVQ9r8lVHv67RYV/Mqyl7sgTZmLt5QCLXnh/ikV3e8HrMKi7tlQfS16RiiaJ3fItG7xD/3/o/pmzEPgqAu5mqDvfV+uVK4NYbIjDOZC2FE+ZW4d2gCGs74Hh8cGPRU/z1oF+dz1GrTAP0TvIG6h0dhbC4Y1CAh3psxuvOMITiUshVWj1+N0Ttq4bu3l+L+oJLYFfyEmaF7hXIhOL4T4Zjx2GEqJo9Mih/a33osPuePJTG3Z3VsiZ8STQu8iZN7cuBQk5pYU3Q2Xj+UOWJXSaxI8wYqvgDd5vyB89/kRcemKRB30PWvk0GvrPBbwQK4XSM3ytZsjiBDRch7H2HlnnWG1kMw5gI6VzmKpZMSIfwEJk2chSeCgVhUY9HcISFM/ieI+U8HkDxDFoiIOHvuPO7cuYuYqADZcuXwVxrott8P46v+A3D93Ln67bsgWbIU/JnqnzhxQty5fR9hEOHvnNGIx8mi4idMjEdBDE7vO4Axg3vhzJGDuHk/esGidShf/lkkSvwIl86eR5yIEMmTp0TmPP/KJGNZ3gZIu68tJi8tgtwp0iNl/Mv47HKcPtdb47thdZFi9ddIOP8wTKmBUk3T4hknkeGr+5k7pMKZvXmQKv8GHLIPRaonQdV1e6DMM+h7Ol2t1DcxrH5fTLlWBrlTH0XOUs8jbeFK2L/pxMWqYzF36zn88mR8DPuX/nXRuTGp5jOoPjNLZyG+mgMJSh/E+p8HonLR9Hj/9gLcDtdtmrIDu++UxaLqUNtUtPg9BxR+DmXnLEQ4td/yHgEqe4TPJl3D5l0PMPGp0yj+UX1sGzQVBt44fxrKD2iCV2e/gBderIAdBZOg0oubsG/2n+InjNuFM298Cu+PQaNrDTHnbC+MeOInBNvuJLlQG92tQI63r2Bhp3zY9WtdJB0zDNX2Hgw3l8CsbEtQ5furf11WxtV/A92KTUDbpr+j51NNV+4ajEt3oUy8cVApKaqsOoxPs0/CkDRbsLNReCOiI76+WQLx/2V+uyPJ8d3WC1gXZ2GeNmtRbvEFTC2wEy4EuFKkHCYWm4lUS5fgauOJ5z4pjMteQIaTqxHUr42PbvTE+Fd/Q+p8C5Hv8JIVFkDDcxAUxZmNxbEm4bsIfsqOOnFfbutxS/VD0LcSegRJ0NSzCJtuhr86gKmNi6B4qUpY8NUvCJaH2PxlfjQqcQo5wuJvXl+HJuc/xesZoxCsn4M8J2sjmPs92n1wH+6ee6NUT3w+4SOkbfG5v4YU15aHy1XfgAJxkXF91IyfnkK953/Hln5PYZWmeDbhS0jUtwB+UjJhie9h1GPH/zF/SKIQXVtPRK2j+XChy543wdXJ/bDh5alY1HYnjuR7CokODEOPfB8vLvohDuwsiyGRd7C7SQY07wJLHueg/A73bXktKIHg1Qnona8qOlqN9MNnIQhawZEfca/RiVd+X45BW1Oi6s/9sLTmSSweehN/p89sOL8YQZxLSBQ9D3e3n0TmWx8iw+areGPKCGR+tt/7m/djwK6D6BmUwBdhKnRc+iZKFZuJV070+3TcTlQ5sQFB7+EY9Ek0+k0Zgf6Xv0epfZ8i+Gnyw4V1sP67GJTNlhaDNh1EtUn9sa3zFOwYMgxFN5eRc6v/EjsEFEssscTyf5T/RAAZM+dCgpTprt84gkdRUYiMCJAwSUL8smwz7kZF4+7dBxj3/fcPYwK0eucDxEuSAPETJMbN67f5c2Hx45TQiMDDmGgki58QN//4A+NHfIEd27YjMgLiEkZFYf2aTYgbGYEChbPj/vXbyPB0AaTL8Z8IQExrdEq1C2dTLMDrA5pjQuLeuH+jz7KZN5C2en7sW/AuKgTV0f7ixxj5+HZ8dX7svRWd7MhFLH3yNhJeLIk96eNguLsYXOZFJLMFUV3e2Zv4GnKlDnC3yji8fyoOrr+6GtkXhuh+t4ca5VHt+wuo/FMXaDLrb/ndVkOeOr/h9SeXNjwG1co/iStVliPXsss4s7sHBo54DwOKD56kE25u3IGnmjdA5q47Mbjya3i8TGvBKy9hSM3GlSOT44aaGNd8Md4LX4B3V2Pbpa/RJd0v+OTIS2VyJMaR4m1hW2k8St0OuTqXx1e1u4G5j8V/vLQQZr8QYsqc5lg8vTXSVPsVdds0xNV7Q5dHz0UuhdHt12eQZsqX6L7kF/z41Atoc7LB9yd+RHAyEd5NWBb7hpTHkt0T8NtQ2Bo3CnUzVDztdZQZvB8X3/sAdf4oj/5vQ89da/DeNy0QPNvd5u0IO+fyX+p+mx4/R+aAH4/u/+x1pLqVAtUyDkSBHc/i82q5UffRHbz8ynz4Om6cjumxqdcP8EpLnAwn4Nc7TVGn2BT81rYEDvT87EB++G5GiFznGqNRpu6YsC1AeCg3DuctGHTti8SfhVAGbjcZiORTj2GgDqD5Y/HDD6XFthdGQPuU6P5sgGNLQ0zc8BGKB9Vv1j+JxHe7o9PCtxCW6YhO4Qd4aXdJzK4zAanXp4x+qw6WLY+HzC2/wLH9PbAh3zto0GMXBAvQ60riXV9Bjmfa4GjQGGH4ElL1Ho5rs/cixZ473RaXRPjSFv9NP7+cAHqMaQmZIEPQtc/AAMfvPAujPsTnv8Af92Brunew6Or1Ok2ToZg30GhzZ3Sr+xO+i6iKIOwB2/t7fMjh/RD+mAm/zlyFF1sVh48DdOgK0aPPoteMSSmmT8XIQp9h7DNzEDw4CgvP+TffpoNKX2Le4EFI/t0aXE3SD8kq1QTr0C38Y4BIfPH5bCTdexInJ9RH5pHzUWfBL8jWpvPoZjORdAxkOXIOc5XFe+F0HuccKFv3c8yd3itel+8Q0yslgqnFsOr78wjDnuhwsCO+XZEY5s+r7Dj+ymAlNgKIJZZYYvk/y38igGRp0yB7gedOHdiL5CmSY/+Bk9i/bCMe3o1GhGg8kS41zly4OmXSBKTLmAmvNHsDEXHiIogI8PBBNBLEjcSDh9ERMRAREYlVc2dj0YKluHf3IfLmfwoXzlwoXjw/4kfCnu37cOzwGUQGAUplyIJ48RP+51TSr8JHCZ5G6q8e4al2/ZHvfEp0ee7expgLiEq8BYsiofobrdCtQ1esLncNuZolx+288S9HHMEbF8rhTO6VKOc2ru8sgvXp/8DCHaWw685T8+7WwZm8lyF3XQw+kRQ1Tz+BBl8NwqqP1mUasQ7lO4Krn/xPSywYDl/0GYpap8dVHVMVYdbeKC0l1nzdA+vlwierB+OstZ0WpcW1R/exv+FFJK/6Bl6IhE/mf4tuWR8h/8Np76WZgAFXWmJVeANPnFmNhpnfx9txi6J67oW4dnDOMDeQutRsXOh+Cz7+ESt3vI2nuzf9t/iDmRdga44H6LBhEuKkh0SDt2NX3S7o0G5245enouD3u3C0LqSpdgu9lryNjcEAJDs261C11hjwZBG8eXo+SoLP8gWY1X806ub9HVvzF/59ygG8ua8J4ocFsKr5T3j+eEfE2QdtS8LAiC8Gpn4TS/OOgJ//0f9a9sMoFUxG97pTz+4ejqtTh6LMtPrYmy0pHpSMwcWUxVD51Vw4Vq5X4pm7kTJXHhjxHL443AhRuWag7cwzWN2gHCoU7J3yxlL0HVQfz2+/imcO3UeHItDqzhg8qXzv4bkx69sP8eUXn+Bmt/XIHZMbe19sjhF/ia+ZfywefnUe4y6fwqjJ8DhJYl2OYpiVu2+pH+tBeBOF57+KZTbg672rkeZgTdQ5Cr+Nu1b+g/GYvewM9l9eAj1jUD9OB3glF0KJoeuIi4U/wueNN6PJ4zvUNSPRWFGM6D0fgSZlrp7AgnA+BDX/Nn/SxSYYuB+evPAUOkwcVOS1GSiaYDNuJ4BNa6HyMMiSND3GfFBx01NTEf+XdKi7tidmh43x5bp4GOx1vHemFkbfmblqymuolBbeDONgsaKoPaw0rnzcAgdbDkGCIGOyo7A5R4i9HQqh6FPl8UPwM/L7s5xOzvfr4/0huZB5aID9L8ArCuLrsDo6JliAoF/koPv70aX/PZT85nvcGt4A4SCwN0Tl8Oa1BpBoPtR9ohv2jN2NLJsCDC+TE7t+DtE/XhAOToYHXfvhYkR5zFncHpFBRmRccRRXxn2BFq9uffVESyzz7t/mx0YAscQSSyz/R/lPBBAnIg5yFyu1es4kHD9+Dg8fReOJDCnx0iuVMW3aIty9F4WHD6NOX7iOKWO+Rra8+VHkuXJIkjgJ7t28gQRp0+Lu3ZuJEifC8SMHMGv6JFy7ectfo/97d5+AyKBw0ZxImzYNjh08gmzZn8bt638gwxNPIjIi+t/iT1aNwcLibdExflekGfI5mg5IhC+/H/PNK+XQePlPSLTgVey68BlWDN2DC2nKIv/RtqiX6z1Ts+JWBci0oDSWp1uP+SUfYpjv8FL7gkgYPqr08AkMydsBVZftRMaFW/B+84Ro90063Ny6rsvVSqhYPzmuXnwD/PK3/q4fvIhNp95FoqPvatMS9bP3QbuVdxD5S2lcfCVArxdCdJq3tE/PTNhS8k3EHImHSm/AR5feQZtrTVGkcnYcmnX6lcyt8MTd1zDmrXU4li4fNn42EMOrgEPwrnxDN1bG1OHrMGLLMRypHB89Oj2Pq2/3Q/+ceR6Lf2pQfhTONx9jHwQo/e1sdGpfAT0G38aMLj+mux6gZvIHqFXvLJrH+QkRL9ZDk64n8HW2W2ljxmLk6cfFOfahyp3xGDRtHDZMeAOzp/6CT3eGWbO3wpz525CmwRZ0PdsYToSYknIS+nyYCh/Oq/lhhe9Q7NR/1vJgQfUnkD1MgfBmg2IJh2P7vV8x46XCaJeyBn587W3ETfk2jo8+j4+7fJV0/c8o2+oBPnqnHRZfzY8BY59D1+vbkOPtKkg/vNCvamOxvSi5Ny52tiiPwY2hX60A6ea/nmRIS+T/egCqVG6GJ7sNR6PWWfBUxcqg6mPxuyYWRfzNfVB7chRuhnkxb8KLGLLrIQZXCM/kDPDk4zItr0Di0W/h7roAbbcWQZtczfDdwl/bDM+JUSunY+DeEOHYHRhc+CGKtG6KuOmm4MInX5w+mQP1yrTAXSWRqO9elHcI32wdis+ff/XI9Gqofbf9/5hfbfRUhJ2nQVgOdQ6Fc24Vw9nSp7H/1B18nvkOGoTpEH6REdsvVZ2RfiPyNJ2DnysWwGzr8PKIzRhX9gJCxVAoTrfR4ZMYHnUO7YOh2OsSrj59DMW3pUWtlJHQyUdjJ+IZrdFv8iRsWX8Lx0/cg2//FH+421woeRGp3kyKzPNro05wCuH+VXj1wmw82yLo0XoE6ucaivvHZyHZsM+RelpxHCsY4H4CwYvj4ORTePrsSRQYPQOhGRgx/DASBgH6LDhyuVo1RI/tgN0ry2BQuxn4ePYn6LXrAFJVTI8FLDj2OWT7x/zYCCCWWGKJ5f8o/4kAQgHSZHoqVboMiIgfgTMXriFt2pRInSKRv6o+XL9yA/HiRtx8EIMjp89h4vBByJwlB1Kkz4hb167j0cNHuHP7TqpUKbF41g/Yu28vHjx6iPhxIxGZIB4K5Xly27aDOHNyNa5eu4eH+w4hUaK4uH7zBsLwP71XfHnwVprdmPbcy2jSYwESNmiJl5r9VO9OK8QkLI12Q9dj9tAiSJU6Gjc35MXGYsORK3vu3JmqImlOkHM/qjyogCygQZWiiAzbo8H7MaMKdcCAZgMxI00XvLjqRbzfbw2q/dIO7y+snm/XF3hrV2PYnu5/WqJr+jbI4Cd0zV5y2bwJ+HHDk4iXvgWaPd0XL6R9iPuT0uBR8yc61Kr759lzs1qIPQEkvDgMCSK2IFyfFv2axVRt2wXTKk6HbzMjcAnHSgSoebEH9vTpiaFNCv907CTqzIZK3VOg9umkyFzkI3Sdlubf4r899T2q9OyNUelDnM9+Ael778JXn7bFHGvq/xCifocPsf9Uacwqcg6v/toJh6qsxvi26cOP4PbQ5ij/w1msinwdJaOn4s1Ds7Gw6feoNyDFkVN3cP/nDYj/4x40afILrr0+DddnjUKztWdQr99L3cIk2P4mBOP+0X+56FyUfDY+bLn78kdXcbJ9f0y6eQOlp3yLnt3mI/WDS8g9eCjaRDa42OonjHy9PuakvYXKP87D088Nwt1WAX4afwjf2l3xi904N2guPr/cGAteXIfK/QJ8+wsszdvi7rtT0flqY4xdFoUE4qJphcaY+ctUqPKn+CmKI13ZEHNfC/DeyZvolSkh3i1eFKUr+uyrFvh43FYUfGIbUnWZgmJlvsGodhvR8tQkqGf0upEIcldD/M+exp0KAT7+phOu1syJHVNno8XAOt2GFUP80nth/SRMaFoVLZcugWAIHKoZNLyNjg+/9vgYf9H4wI/4PvgEWTL1wnd9RfetitTmYErYGUneyY42z1/Bwu+Ko89bSddmSomLbWdgbjT0qBmgR8LW6NwsFU5V6IVdP4ZNF05D6a9+xnGQPHI8CqxMAh3LIFx5CQvvHapxdTH6FyiGmz0eotH38fDxiCbw7Z9zYE9NmYyH09piRZdreLr1D0jpWVTZ9CHavL0aza9Oq/PcIawOLyB+r58Q97OBiK72DUpUSoKkHydsHq8C7j+VGF89hPeW70ZQbC5CnXG/UYhHz2+LXn8Er//0HfrphtHr22LpNmi3ITeadQ7Rt1rOJ3IEaOkf/tMBBELEj5sgImEynNu7DzduPcDZC9dx6dIdNGlcGdt+P4oVy39LHBOFa/ceYs3Gzcg/bSKad+qGi+cv4uypY8iaPdepI4excsl83H3wEInjxkWcCMidPTP69+14++5DfPz+IEQKkDBhfCSIF4mrl84j5s/KQ3+SRGbcX50Z93e2QsS5c5j81mXkyXnyvcIx2LG1GOZl+hLjDrTGwIct0D/6Z1QYfwdPJsiSOXUbdPM5wlNFcCD1N7hxNA/CON0xbMMibCkaL9GR11Bu0Chc6HMQ1dJsRMGKd/Bpyq0ocX1QhcFbMLNKbrz6+L+35z/6364fFx8smA4v16v8KET+vU3x8MOkMDZEOm/hm5Lp8c786b/VXIreS0KkWwKF3UCqb+Kgab+S6J32O6ze/Xznfl8i4f6oxwfEmm//QJffkuJAnenI0PoIfjg597USEWjmI4yttQZv5NmCzoUSYHqWNJjxl/jT2W6h8cjkSHcoCWb4GO2LfoZtz8DVn2aVnZ0PZed2QrPbPXFl6gSkqLEK43I8i3EN93oxRJIv4Ls6PRG6gSG1KiLb3fToFNbBYbyTFpNrPI8aFabjq1k1sPnHW9hXKR3K7yyIY+GYSY9XlCXuAz7+2/wF3z2HrkaibbBgTO4zaFV6MVYmOoVVwXTEnQ1d5Ecw+Hs8uSN774gvcOlCiNcyBIgbtwu6Pj8U7y3/CvVudUGQaMjVxN3RPsdujDy5G02fiI8RuiJDlcuonilcVBM6z06IfSqgb/cQnw56D73CdWj4l/grt8YgVb990O0WXpucBDufguSjn8aIMkGRJUUQ1Ss+Pn/UDueCbzFWBdzK/hAXl5ZAWOE3j9rDZXi2ch98V6Y9PDMU+Y6mQIt0N5AoLDm6QYirIxNgSm94uuLL6FA5Mb51F0l+jB5YchBuNHrKf1n5ZAMMDk/gTv0vMPbK+zdWhYgf3RxHTUKuJA+wrPEd9C2wCKsTD1ycawlWjfsOu59ZhEstX0HUxddRr0NV7J1cEplDx3uMRLGdXVF2QSEcSrcTs7O+jjpfxqD8uIMofTO4FRRH1LKumFWxO7KnPoYPD775b/FP5auB64UWoujMAMHjfU761scvLV/CkD218Ekp700KEC/fh8iVfjqS5m2GbU0mI07G3zCuTfHMZzqj+OUZeDHeANyI6IOpVTuiZm+oXSjAmPWL5iiGlndao0a+JzBgTy1UHB1iVMQvaHf3WZT4PV+VUkfg03/0xw4BxRJLLLH8H+U/EUB0TIhHDx/evHYN8eLHR9IYePDgIfIVyIrqtasgy9P78Ov67XGjISKIxu3b9/Hzj5NQomxFbNu6DquWLED7zh+sWb0MJ0+dQUQYgQTxIxHECZAjWyYkSpbw4cMoxIsTH3fuPsSdew+QMlUaXLl8Fo/u3v23+FFXocQL89HqhWToF5xAyvqtcXRy70U9UuDlh6/gmTcSY32ro2jXNMCLp26g/KDl+OpA3bPHD0NyuF/6EvJ6GyO+rYy5axKh4qc38aDiq62HzsbFjNlR69VLWPKoFD6+OAmnE6bBg6VvVToVDyX/2Ie5D/L9T0vsPlQfH2x5BbOeHNksa0lMXZ8MfcYmQu3foODybxHR5DvkjcxLPnSpthovTPkIvnwKd3fcQKa1AX5KmxPV5vVZ+eE01Ei7FbbmRbnWXTHvoztI91oxHN+1HZcfjN44txcm164J77XHF6+ORPeZN9G65yjo9+eK/nffG4Lu939Gp9wn8FmV0shfHXo/uoaJWar82jkCWpbAzuRPokiyrXDpW/h2OjIE/c6GVRHHG/jeZeTY0AFlGrXFyJalUftBR1j5au+t45Bh2FjcSTYMx14fDimjMKHbJ5hc5XOM/lGKcisws82n8M0/5vde1RvPLL6EFw4ca9WzEZoXj8baD59HcB8+qNwDN8bNxOHs5dG76LnGXUch5/bXkDlbQ4w++iVWT4aLzSahdgBhx847ri3DqI2VMdI7uPP2exjcvAnKnV2LeW8WGn53B+K0/wRX2n+AhFHv4fk4K7H/P/UcFWneGofndEa3cCimnJ+K8MUmOJ1kO/7ItEffHXjpeoAe4EiKxPjp+jE8OlIUiweswKZPg+dKp0PFly5heVVo6SOc2fE8bn7bABVdQf8UDbbdaIJys55BqZmw8fUSyDrrDvbnPYrCt2t0r94QS+o8479kf/M6diYogpFvvoiBP3nuG6h4Yj96lOyHtZU/wGrx0fBMSSRofSRmRnnsfb8cft6xDokuPIt7Bc8h9BPKa4ipWQ+8fGItjgRrcGbbLiSvFYkbJVshfeXxWPFzX5yKtqxeV8T8MB1NKo/BLOtQZmkuLLTqsfg1c8ah6e0AVZuHCCVBwqt3MLB8XLyfuC26bau4xCc4s68MDmfYhPB5CNbWxLYxMahRqWf1LSFGfBXgnVvDkDB3C/yyfjzm9x+NRt2b49XP4z7XfBvu/tYB7XNsRmXRaNGuMNqe3IXhY0JUbjEv7dupcPnTq3+bHxsBxBJLLLH8H+U/EUDEn1u3R0dERuJxyuYfl28iKirCX+Uf7t+4jSfSpUH1KqWWLd2EB1ER/irrf/b4WYweMQjRUQGOHT2MeXOmbN60GVEhJE8aiThBgLy5s6Fly5qIDOIHEbcRL0EcRMWByzfuQ8wlJExyGtdvXPu3+GarbyCiTk1M7XwdNe6nQJUEn2Nu11yJX9+OPBtLYWb3Hqh++wdM9RI2Nt6Le82aoEe/hutLr4Uj+ZGwdDrMrzsfS/IfgGf/wPkso1Br4E95ssbF9sGzEDNqCFqqgQSD76LY+dWI2pPondef9tf6nTz/mb+AHDMmYtLtNMh9+62J+0KsKLsK6e1DwRTvo3fPgag3ozpWbPqo5dQQq3+AHZVno+gXxbHyYme8VW4IStX/FecWNyuR+ByUfA75L6bEhgmdkHw4lLEDkYZhVb1BewrCxGJw6Hw5THz/FUw7ugMRX5T/t/jRzQOsK3wAIwXY2rcChn5ZHS8tSIluO71W9FdkHDwQgz5PBCtLQ60/8KhEUuw+HLZ8vI3BwV/Q8vMQnSLSIjyeDjZPR7tPk6J+jTExeashosw6fFamNQq/VBHrR0bg+TnJkLJrXlze1nRp/YroduslsPBv/UtOzkSqE7/hep7Nm76GdbMj4MOMCOPXwB8Z8+N+nfL4svxXGK1L8LjdI3YhKHAC415uBgsnY1GzV5H6fAv8MFezdpWQ7u50jPzxWTwIA1QEhaOvITzwTIUbE/HE7hcw+Q0oOKQZchuCmA3LMMvjZFCn6q3E5F29MOxBEYSjGiO42hgdDr6EuneO63ocnngeuaoewYknk+L4teq4+dxCrO28CNWSBwuf+wjLm0eicfoO6FazN9LM341f1ozF2AwhjH+718L46BD8huwxB7F2/Gdo+dt0HC34KoLJw4aM+AHVUjy+9P/JxP3h05woVacuxj47CoPLfK9jLUzf/Ruy9obBM9vjaW/j2TkBYrpKmnU8vimRDUHxb9CnXXr8mO8eji0egrYFTuDa2CFvjfyYx1vlCn5/G1UTr8LYcDwuBYexccgRtPnoSdHQq8FoFPlmFQ6G51Hpzwocox+Lf2NSRkQvD3Ep7hlU3FEdq18qglQXb8CUisjS4/uN8bNg6vfJMHVVG1zM9ziJ4ziKN2+HObUu1R5WHW6EqJTwWzQ4PREPn0yO90feQIJH32HXd5XD4Czir/8WSZ4PkXXW09ikD26snYuElRJg1rZ9b2ZLi/7S/m1+bAQQSyyxxPJ/lP9mAQVw7tSRy+fP4OzFy7h1JwpRETGIGzcuEiRLgqSpkqNl84ZnTpzHmdOncOtegOjoEFt+XYNk6VMiIiLA8kWLPYxCwsQRiBcJyRLFQ7Fn8iB9psyIjBvxeBFZ8hSJkSJhAkTHROPJLOkRLyIOguiYf4tPUSA5LjiLqu2G49bGI4iuWx9196daGHcsXv5+MJLnyIzpa95AgZhjaBF9B89sXoGtDacuKPwaNuepjTyH82Np5fM4M/Ycsm7PghnJsiFsNKFM786499UzyPtqRywbcBU7Dj+JVC9cQ9VsM46ceYR8mU+hdJD4f1oi74lCmGU81ibZk6LkFDT8rCsU7QI5B+Lj6ZuhXFHkm5jynUUrMfr8AXTomBQ7pzzAoNUF8d7aPNj+wxwU61u6U8NK+DJDY9RffAbJ++XGsJ1bkbzgNdSKXIoFPT36vQkux5+KviUbY9C8CHxavDwGPSoAwa+PxU9s9DKmfJkbQ9+7iJSj0mN43/j4tlmIwmFQdNwodKn2IQqneR9PdIlGpycgfuGByDa+x6+/NEH3q3FQZEo6bNlWGdtrbUGHtY2w6VZGPLi0Icp6xG/cArU/GI7agw7gzTNN0an/YQRbSqN7iyIbWkKd42v/x/zHv1/Xqh5OvrWpeK8A865C2qF1cHlWc6TpNhrq5MHo+gcxfcq4RpenoGdMLkjXEJd2roNnAmSrXAdNl4VY067WUdPR7fJpjPM0BjuCwnFyYOSINAi+Tta05SkUzgt7+k5G56y9MWdHiFaHuv9bfJAkB4YfTYbON7KjyuffI0nZyYhYvhIry48Pmz2NHGNvYlZ4CRmGDcagrl3QqN9BlKtYCM0WKZ7iHdTMAPmXvIVi8z9EDYNQZeUc/PBbgOCz1jbeR2+Q8NHXeLniNBxbNx1Rq7cgzHBmiF7oXKvb/5g/0HDcLDwSYz3EtWPxUlxNhKLPBtjxFbSO1wCFovMjbsrDGDD6eMH11fHi81Mw6sg7SPFwDdpHbMK5VB8i9YYcaDSsyPqtPyIy/yAcfycCD5OdRYtzEIY50aLW8xiwp1GPnaOxuF0Z/K4zvgiexpJP/qN/3JUQjTuNR4N5q/BBo5r4NFiKKtW+Q85wMYxaGbaDr1OFaJI3QHmjMXTtZ3i3THusrFs+w2u78VzkcYzr0wv5el/CjaFb0F1HDFy+FROfyhuseAJHn++G+M8Nxu1NJ5AnqibC85PwsHlbPL86rfN5IOM/+v/TATzm5h9XIuIEeCJDOhy+ex7Rj0I8jIpGVEwkIgRIliRe8cK5cOTEOQSPd3j/M64Icf/2TUSHECUmTrwAkeLifkyAePfj4KmnMiEm6j4iJYyMlwSpU6dGdPQxREUHeBAVIvAQj+7f+7fs+Fd6YsL1OvioRDEkyR1g+eaLiJg+e8+9mmg5+z1kPdcDa6s+gZsj9yKqyB4Uy1sUW1cWSbM6N3Z9MAC/lz+IO6vrYmecBKg58xR+6b0IKUa1qFl1DY5/dRyjJi9Aqgs3sOu5J3Dgg2X4LeGeHGcKIG3KbLi8/OL/2P5Kmvw4sjEPvgjyd3+uLMY9eQBvHvsKNw5NQrItU+DmUlQYXShhy8tY2OktmAW/Hs+NMfMOIqLiXkSMno9PwyvHmjzAl+3jo9dLo+FUDbxVZCHecQLHPm6Ia9eD7L/NQatvoWvtjxF5uzfeStQQWSs9Vj388bcy++cjdWOoeDAOap+Hd5csw2f71qPBS5vyhxPRwnzsWvIOdm0vjCsXD2JQkQxY83ruyz7EifAOdgbJERiGYZ9WxpRnP8WqT2sgUUTz/js7YfL3L2DNr2cxadtwTN0AVfp1wawtkZhzcPj2kaexePkNBGv+GYXY9/UR1FsyDAeq2vHyLZxZCH8kjcLQEUtQtshV/BJegCBE+vCZucbgq2+hsAmoey8h5m6djAP1X0OhVQsxTu34KxvhpzSdELz6LFrMhIutJmH+qtvYPf2tEYfrIl3f7Mi8ry7K+BmvXP0YP3Uc5F+J9OM+yYLXM72LHimuY3vmY5gVdRvPVVqPV1a9sXzlamxOdg0j0k5HoT8qIFJa/Hp0AcLZxxGkOzepeFkkNxG/RI7CgURfoMbdIbg3qzOeTdgBxVvV2pocgqm7EMb/GonCthhSqjri5muNP+6++ChhPwRnXoF5f3tvTtrV6NUmHfp8FB/vXwlPpq6LNYVnwI2fMeNhHaTvGaDBjvp4r1SpLuf24+k50C5TEZjRCGuzzUDnxbB1IbzV68hLbQNUn1gdi/IUQs5dR5EjayecvbsIk+b1R/IcO8MjOxGsSoIVc8fi5wO5kTfhA/z81xDW8BO1kH3V12gz7w3ouQRh1/x4MccRFHQJuyaVuLEnMUrvyIrliUJsyAYHB67ENy2X4qkjVZ/74y2Uv7QLz9xMhx0fb8WHfsLCMBMqZYPw1IGFHaDBgffQOsyI196OQHizLOZNqohaP36GMHXQM8c3GKDj3+bHDgHFEksssfwf5b8RQAykzvREmuQpcPnKTcTExOBhVIi4CRPg+sXLSJYwxKPomKzZMyJV8sS4fuMORMQgjIlBnMiEiBs3RHTM/YjwASLjRCBeRATSpE+F5ImT4v69W3gQde3W/SikSJscQWQEggdROHHyIpIkTY7IuP/e04kiLfHpodwIG2dH5WnQ9P13MbLWy1m3T8apYaWxsMEATLzSDgfujELveenxc8s7SHHjRutscSF5WgSrWiI0HhnL3cflM1DqQQIcTtq/35ry6N+rBjY0vIe2N6qibaFDSJFmL17zeLbHXVdxZ3WG/2mJOSfj4UqwBxmXdDu29Cre+HQwyo7YiGTn7+Jmn+rIk+hlnPO6hA2xbs00lEnRGNn6H0LubyKxMU80ShW6gnNf9Hpp6qfYt/NlTO6yAMm/yopak5ogKFoWv/cugsSL34sTNMfP39xA2yG9kfP38bhfqRq6l4vA+3+Jjzs0QMWS91BQUxgRYm6TAMEbtSBNzvT9vsUPEfUwsVcl3B+xDUGH4jhwYQBemN+8+pLx2H+/LZLnWII9X0L+VB8hKDsEv+ythcpFfpix83kkPJ4KSZZ2xh9L+6FD84/QdVsfZA2/RIZn9z6fKj+G/u8ghGurPsfid7vh7scfd8yQHBlSwK03YxBxvTUqG4cN5aKQNjH0C7YtsxXp+4xC4md6Yu64jrj19gJcr1gb32Ysh/eXJXtm+DRsnbYCGWe+iXeyTcPYRs0wo/NXOG1DyuiZ2Nv5AZovfR3roschvLQFQY92UOfx3lpeTxFg2bM3MTD1J6ia4hmc3tgVpVd0QreZ750Z8zT6pjqIOFeWokyROuj2ez8km/MBTodH8d6Xiw17AUVSZUemSkWwb8RX2JK9GCZEfY7c9Ydj0Xe/mzweDYu/Dl3GIO+CE/jJVDSadxHNXzrw+Zae2Nx8Kp79l/kTl2VH88258NXBAN9UUnbeUizcHqJNzQC3hJj3I4w+HKCEpjkECHq0xuyB36Hk1ZroVSlEphETIHUPVNzSYvfmEKnCAIsPJEPJIEDLk3nQ9eMjKHxoNHYeWbb6FciRKED1z0ti4qG0aLiwBPr9JX7fz/tx58EGpJ0cwpKFmPvlekT5CY8W58OY0qnDF9MissqvMPQC7h97Hm4dR4U3BqD/lfDcnCTIFJREnuR78J3dSNCnIj4ISqDqjN/h52Slvi2J7ZUzINI03NuwAqeKfIfawT20rvMKvlM7fOkdDPgxNgKIJZZYYvk/z38jgCBE8tTpbz0McPTsBdy499Bfg+/3HoU4evwUnnwyA9JnzFywUFq81jwJNv6yFEdPn8edR9GIDgLceRCNOBGRyYJIxI8XB/ny5EDF2vWQo1B+JEyYEDt/27hu5QpcuXELz5YoijBhCty8cR1Fn6+IFOnT/0d8gtyQ+jYuDk+EDE7AxfrIleOPi3l7oGyxAyj2bVqcX/Q8fi4BM5eUR+ssB/BJ3CRvplqABA+T4rolKOFNHFu+A8WWQ5uScfD+/ORvB1tx9P2XEe7uhZ9ezINSwyH9B3AlnhuXINvy1Mg4+Dr+vaBnRWrI8NRI9DtqV05Y4i6q1C6J7ZmPY4M3saHJXZyZeuZuvaX4/fI4FF0+CJ3G5EDvxp+geLV6eOtkd7wy5m6NP8CNihjTF5pVPQ7fnsHOLeWQqdIJpD3wdrioNrZuG4zKnWei3Pm5SOsQDqwpyz+5fBNr9Uba8+0w32E8HZEZhof45fZx3FlSvk6br7Cm+gGcSvUHutRZhbVtLqNf+70o8uaj8MJXCBZ/hYKHIb8zEGTGob3tsXAGNGpd+ber7TD+4vM4+kNHNHs0DouDVsi6GYJnkiPj1gF75cfct0fw9/wFPN+2DH5e9TMmVEz7TWSIbW8twZdDI9Br7QXM6DkW61ctR4G7lbCsWBiWKoTTpWFZlyxolOABugc3EF2zMyK2jUP9ca/+ePs1FN6THIuKxyDdzgb4sHCAri6jmrQFetdGiThJUfSjXqiXdD1uvH8PYZ33EPy5u66gwXb8EDcZmgzdgDgF+2O8TCgX5whSRtWa9Edz1Kw+GZnSX8PXny3H1PadcFZHDA+G4eaOfKVORuOZ+PcxvBh4IQFS5Q+hbAWsTJgDO+Nvj8x+DXMaP8B7ddtjWs21GDQ5MQq89jtOqpe3UktMaLsbPvxnAuZkoldR53Ya5PpwA4ZWini3yVY88wzs35cP51osRZYj1ZAqywTce+6VSrNCBBnGo25YBfmCJEjX8zUUn7wK5d76ADPfa/Po9Ro49+oJnGuZFd+F8HvQCMU73UKXDxIhCDwu6JC3RVasqf8DMr6/HUGOTLC03GPxaytfRsHzTXGldCsM/XgCpu9dgzBeMwQ582Jy+M6Q2V+i7fYvMWAlBBuOYeOSyli5tCOW7ZqzudOveH5odyweGOK5/QHOp1iHp1qXweiDD5Fmec5fn2mLQTnHI+EPr2Pl7VNo9NIaLB+fEk+Mn4M27YKcXYb5L7ERQCyxxBLL/1H+WwpCgJRpMhSvUBsP4/yK9Nev4sKZozi+9wDO7D+ICtWroHrDEsnjPkSuPPmw6dd1ePC4TFsQlz8r/Uc9jESk8G5M4K8dwcLIuMiYOT3ixYuLB9GR2Pbb3tUrNiNe3BC58+bG62+/j+wFSyBhogSICOL951Q+349tLfPiVuqruC8BMqSfiIpaHANr521Fv5tjcfBcXGS7Xw3zciVGvMmJ8VTbrWMHJ8asnI/wfibIfy0R7j0VD3MP1MOD29PwkiQV8sdDy+Zd8Ok7yVH0iSnI264pxMuD1OdibmeK4K+Coj9s+Z+WqJgEnm0Cmw+tK/bKr+hy+mNMqXcRzZ4YhuKL76PaVMi6LrM3MyPXmKrYW+h7bJvXCscn1UTlPypiV6YC8PX5R0uXInphTbQBfZZ+gI9uXcXN3aeQdFVDhClHLx7cFFnulsPNRY8w64sMmPb9r1hT5+G/xbe58zFOZDmI/aMboOUrR+HzAJE/dMaRFCfDzx+h+bC4+OZqF2z69hF2He8Lg+qi/rft8o+6ie61NuJmvuy4WbUJkq+/i2q7E6LYtADLkn99MmVXPNn/GSxq0BnNS4zAC98UQJC/AsJZN/HR+jFLywxCk2nx8eu/IoAxR0fgvXeqo1a8B2PzB2id5wiOl4E7xVNg0DcBGq5Mi29ebYO9Q3vfL9ccWSZ3wx+tuyPRkY0IwxsQDEC9b3tj3OiPguUQbluB31q8hstdUuDr5S/jRlAaYZhiXo1seHvUYJzINgaRbyTC16+1QfK2P8CcP8XXzV8Mg2JCtMnzEDmD5fggDDCzbiHc+ab5nIIB6m/9Hq9WX4EO7eHc+gDjf/sIq1Kkxuy3X/pSLax+OwHCUyGCd1Ph9V8C/NwjNYZMaYrUK57f0G497m2DbZsfi7qF++9uRb0US1Ampkn7ffBshYn+y8d9NiNHidbY1/0UumV6dKFacXSsEuKpjpkw/cVq2Lu7KNbeegKrnwuazVyD0AK82HU2ZoUB3vg6xOiOO3FrY2Ms+7HTcyfHI1mQFWHYAB0GzMKmMCv6zkqBZ7oOxwevtDr+/teIW+Uk5k9cjA5BR4ThGAQj/hS/a2wUui2ApW/kw9lV0zG1dFYUeKshwvBxuBwhW4BPe05DL08h19xDODhvG56KXxqNFqVaVKI0zqbNhnfOxcPpx/HSV1Mx8D2YtyonXkgwJOOq23h90Ru4bwUWRBTD0AbJMDHxQEy+8wNq7Phw3Q+pkaHIP+bHRgCxxBJLLP9H+Z85AIgTJ/6rb3bEy682w5Rhn+H3mCs4fvIS7tx/gEMHT6DagxuP4sZA+ADx4sXHo6gIJEoUD9EBRAURSBwRN3z4OEEoQETiBIgQhdBDPHx4DydPnLoXHY3oMBKXLl7Bkhnfo12BZxAZxEP4zygizGqUFw3ST8L9Qc1xJOEaJCjeAlb+Fnx4G7N+ehtn4ibBnvvXEHNuLwrKjnZTLyBNkyxejUH3KkeQZ1sb9DxyFYpF4dV401Bi0Id4rsGGX5rfw5mlF3B21SyUqBsXibL1xm0wZXnE1IKLMLJMdSQpUwWa/aP/8rZh6PrZO5jwbvQnBz5C+l6dcf/RLtyscgFbC91FnxKHMOG3uk5swprdC/HErmLQuD6edhVLfrqGRWFinLqdu92EvFggP6Lsw/1KF2F5BRT5dSWS9UuF0PKXir8Mz61F/jrv4HHWT9lWXyPSC/82P1nBEH/Eg5eqdsC8MxNQb2B/TJr3JuJcC4NkAew8gZNbo5BkTlXs++Uo1kY2xqzoxQsX/Iy13xdDxX0fIlmQFJMypMGV5vnR+cMAuV8vvCF4Gbeql0T2Qa/giAToagtmNz+IYHYpTFyfsFE4DPJ9jzYO/K0//9svIrUGWHlxVqfXemHNzR3IWuMQIjLGxyefhvhizHB0TNweVTa0b1V/FMLR63F2yhzEqVgCUUF3nKibFV//8i5qJTNzMWTo2goX92xC5Il2KOUGsquPIAjrvQCnvgOXyqKfEN8Og00Zs//dHEjy9g7c31cMcTamxzPx7uLk77kxb1Y/7P24VYcWNdBgR0sIv8f20bNQKPVqFOpcDtd7LsO73b5cFKxDNSGC+QEKTu+Hdzf2xOZC1bHis8WIU2rD/I3QxxVk6ZsaiW/2xbWcpVB7wC2s+yFFuV9K4OPnHv/f/vK3+fEm/4h6OZ9DvI5J8HuafvOGzsb8V3fA2UHIeWQwCjd/C/3ulsKRgyVPJohGyWAQytz7HF98ORs/dFqCuS3WIZhUBp+36ZK3QUPESz0cxjTH5h53oOgKnEnUGw4uw8oSHSK/GILsjarhmU0d8UgXjAsG+xdBcAelJcLZpXdx7sX7CN5KgBbh9yiZ9QzaN6vfquuHuFe/MSw9hmxJPsDVA88hXZga1YLwuct1Uf2zrsg3FJ73Pd7u0go5yn4G5fNg0aSocFElf03GjdIGbZ+ti6GfNEOmIlPw8edT8HnzBSOP1/Rf/lsLKAwRRAaPl9reCeD8ieM4f+ka7tyLxoOoSMQEEXh4/3a8IC7iRjxEVGQUkiWIj7RJAtx8AA/uP0K6ZAmDOJH448YDxImMRBjzEJFRD/Ho4X3ETZT40f1HiIiIxsXL13DwyH7c+uMSkiZLiojwP2fS4DZsDOKgVE448Uo5PJ74TFowpt7Yd3Eyww2kz5kNX5zOix/TT8Hxgm+ienRZbHVi+71KmLD3DkokeQK9U97B2wNfx8wqEJ29FTp8WDPLhVaYf7sEWq04hrNH66NM/aVIUi0/KjbPnEMx5DsM/WL+dyHYiqffQflUkP7QC5uOQMofJiH33vZQcBamNXsWLzTJBTP3ZLr9Fbqm6IJyJWCoUigcVMSuSWnx1oiNiJvvJ9ujUefPDSFOoEGPj9BMGxTfEOD3Iz+h/TuT06xJjt5HR2DWzpdRLAYK9WiHfdm/8rgSKYjWABVajELGCW3Qr2VW3Nv8Iqp+9DOmbP8w+echjoqLrjX6IFm2o8hXbwZWJBmLF18u+v0PexC3QohDR/Fnb98s3INtwXj0K1EZP2xa9HIYiY7nE8Lkhwji98Kyd0tiTNIQZQvAjvNftgjKYGJYBoLxf5v/fPk+yP/yj9jRJcG8LCvR6af7GBp3N6YHfXH08His/eI+Ng15EbezTmvcex6q3OiEX+q+gqg+z6DHyARofPoPFB7+JWK+Kdp58yJcmNgFL4xsiwQnvkTOZedQ7vBWfLU76WfTnsOr2T7ArP7b0DCEKxVexcpVif595bRsthqTPt2BKl0GYODLPTGtyFEkUgPfnLg7asdpDAlXwru9sGFoNQjyY1v4Pj7OsAfV+48r6020b5oWz7X5DO+16YkHXwSo+zykfmsoWmy9fev1Ixg4/iAmn3gZq2Z3Rfs1rXHlzSZo55lJs+chU59fce5fHcCj6tPx/seFsLIGDLmbZ1hmOJOyBXY0yo4JHdtiSNHfMPLyItQ+GHV9TUtsmXsSQZ8xqLvkQ2wuVxD7Js2EVrVQtXT2xoUTo/2Z9lDuSby/ZhEM2I7pVbOi8NwQaQtt/LzFdvTa2REF+u5F5PC+CFt+BRP+vP2MFxWia+QlXHYBm6tmRDi+Gc53nYwGwx6rCNtPCnDq0BB8N6c2hiXejZ8KQZyWgzHhlClfdEUQZMCDvucxaGgCJBqaCKeGj8euiT0w/KXR31uHSwM64ZOb2TCn7BUMjvszTq1PB1bhii7tj93GW/4pQxA7BBRLLLHE8n+U/6kFFED4Zz7oxTOncOXKLcQJEuBe1B1ECRAVFeLuvVuJ4iTG3XuPkCpVGqRJeRlJ40YjKjIawe0oJE4aP17wCKIjkTheQty5cxsxUcnw8O4DRMaLfz+M/PtASePHw8OHIQ7v24HM2Z6G4L/jV8Xg9IgmKNVhLbJcyoZC6Z7Ah6t2pNv4AZ6a3whH7MC9flDtmWJ47uBmXPtsIXqljvPka4WQKboiXjkZD7fzhPjkZBbkHpkfX/z2CfrszJ36tfqIu+QibqmCRw8+xCd1p+CbYpmRcMvDcjH3cO25u/hAenz4L/k7jq9Ho1SpYfPM/Wk+QasL7RAvPzTP3wBjDYZFJWDTgHPxO0PCnbAvJcb8sBT75mzDsh0XsHviABRbu+64TXh601n0W/gEgkohJruJJUtbotCWe6i1+L1soFXyl/D9G6AvvPRFPzQcX/ff3v+xdRN6VjmHrr1KoWWmw0hcfxn2LG+D3OHxQvohd8cQA78OkG1aEXQv1AS7FUWjezFtyzVHi8U38Xbnt6Fhd3h/OIpvTI2+Wfui9YARF298iMkdyqLZM/OwMN0H2L8iMy5PXYw8u59AnhT1TvwyDNW947/8+OgqJuY9jEITD+UsWBqKdMac4kNwMtzKn9XugxPf4cmaY9Dn5Dd/fL0fA18dgQTjX0T2XzsgeuMGHEv/C2b+1gLrnuxl2BTsHZQOlSffwN22R9DrRBaE76XA3XnTjxzOj5lvRiBo/T4qBQFajZ6O2vXb43ENANzo+RCrwSV78HGbHkhy6iBGn22AdNHPjbMCje3C9K+fQjD0eVj1HsKzL+FQjlcw8MKmI8FcRLx+DGHUZgy+eRhf94lEzzAanxQ9hQTVrma6+yT291iN1McSIGfPSdg4qT3ivtYflQqG6bMXRPePPsO5Kv+Yn/ezEHm8h2IFnsTcVcszLM2DERlPo2bjaNRMNA8DxjdDh1JDMW9JL5k+wsS+eRD2yYkZC/ehXrUhuKkvBjTag45VIlM2DHH2nRF4M89ijP01RLXktfFSMBftE/yBHS0/X7smwL7uIRLXvYqEB5cizvaOuDHhT/EPe8CSdenxUlHIs3AGanw9FY27tMP2KgXxS8VUVd76BDNnFkO6Z26i+6kvkSv/22hVszPWZssWEwVh16v4seezKBV8h43li6Bt5Sb4rPBAjOn4aZol0Ovhb0hyvSsWNZ6JS48VpvgYz7XLh8wDts+v+L8lyGIjgFhiiSWW/6P85yb68aB6QEwM3Lv5eNz/Fh6EMYiOjMKje3Fw8dpNXLt0LUXcuIiIDBAvCBA/DsSPH4kU8RLhbqoIpEicWPRDXLp2FZFxHiImOgL37t3BtRu3cO7ipajHSh49wp1HMYi8dh0P7t9DjDj+3nvzL1Y/2IZXmxSH82URN2OIg7/dw62MMb9l+AIFnn8WdS8lRYUObyLP+pGYXHwJYioHWJz7+KevZMFr73TCqe5PY9vOllj8bR5kW1Mare9lwr2Iw4uqP8TKBenxcsxtJM/WAO9+f5Y/Q5PESePFzbsBF7dlRsri/5lExcB9pbFr6icoFPF50z9OYLdJuO0eLm3sj/3TD2Ll1y8iKse3Dzq/gnsrByJYEYNTCZ5BTPGX0KR2WeT7DOr/uqnojr1Y815+fDUMTm06CC98jmpVF8KQfHhJkYzWY2OKjtj/Qk/ke78/fr/SFIVKf49Wf4n/ZWR7jB83G/N39kaLnXeRZeRUfJhuAx4cP7gl04twPkC5fW9haOHm+OKHylBzK1ys++VrIcan/wwp7sLkCwMxaFFaZEl5GeHO8mjqq1xvrsGLb3yK66sLoMaH1fFxGKBU1XEQ1Q7Zrk+o/E11LKrS2r8L0pP7xywIN72EtrMPdzvzM74oWAdrrh1Bjld7ovAfcTD/zCws3/cKmhZ84adi87Gi/h94cBTSrx6BMTvho2GvIfP6RWjfL0hZOQneupQeMwYtQf/uR3Hs1TaYNm8ZFnph2Ou/4kGnSKTrNBBvvtgJI19piGLa+FcE8Evl6/j2dIg873+Cma/Hx+eSoe2TE7GrTsrDt6sgOJIbDUa/gTA4AuPSQfkxONdtONZVzL2+PuSpsBuydsbriabhy6deQrKgDR6G+XApInvks82xrfILGHDiPtp3O4Ko1+NhXaGmiLP+/oiwIpbtqvc/5icaGSBByW9xaEYD7G4Yb3QYYoMAA/Z8hNeP9MaPWyFZ8QrQp9e3n1/DaY8nRbajYY7UmBB0xifhy/BrBTwdhNn71UOZJjXxbPmWCNJXQfF6UCXMimnuosj4igVm/IzEg0aifKm3kKnXFkzceRIa/3kGa3e3QaZN3yO8Px7B1oaIKXQJY6v0xdTgRVT5IF/ffr0wJy1EpRqIOPm2o/WQyjjXuiHGTDt6p0EBSPAIkX034/jHAbq9FSJp2z144lEz/HK/dOQH+dG9+zOY+exM3Ng5Ctu7bEGlbRuweX9hHAgubhqzH8Xa/D15FxsBxBJLLLH8X+W/EUAYhUCcxz10pqdyI2nyFDh74QrCR3H9Vd0hTtz4uPjHrSzpk+PR3Vu4eu0yEkTGQaJESZAkfgKcv30fyZIlih8mwvUbN3Hp8nU8eHgbMdGJcO3xfEPc+KE4iAlDxI0bB1ExEcj4VB5E/LnQ7D8RwNO3iuO71NA6OIdMriHIkR+tfridZ3w05g/Yjist38Tikd9i+IMEKNluLR61gAFB1917CmNhvdwYlr0DEmRPiHDXx4jakBofloxG5mQ1k3ZvimHLfsVzOWH/tiTYt28GPimbFR9UKftwdVOkPgL3/5PHAYIfcLlcekg3PN7xNSjYcSa6zZ+P4Dh8Ue4YBvgVs56c3XfcYtzYvQ1bvpyI5c81xJLRhdH5A+j8YX8UP9Mz/qSZyKkaOlaLQZdqmWBXfDTKUx6t8rbH3WtJz6eMRt+fzqPy6v74EeQSDyNT9wcDHmtvNq4KooWoWaUEzl7Kh6I/7UeyOuUR96PvV45LhdnNn8b1L7/F6a41cKxpJbx15mdUybmyR/qlKDCpFwoXjEGKpxfiyXiPNyHYjkBFhOH5ceqhz9sVMf3nd/B72BgTfIXqNX/C3oRVkdaQMS/cx9NhVv5zF1owwwg0+mE6pmcts6piZfTb1BQr3syO8rVPIPrLAWgaORQNCx1DpLRflw6QuUpNdF16EEG3QygzqCXCKz/gYp/xWJ5iQaWvF6BO0QeIDkvjbRtwcW0ZNKmSFsoGDarDga/v4aL1+OOFXXjreoCLrWqit/mPxbe52hcOtMZ7wVhsqDUDH887iCWnf0HB1+8V/P0ZZCjdGduOJMeFDtmRYcx4DApHIEmvW5hxcVKiFa9h9IvF0Gh1iDcKVEWlB0uRNWcZLDqxHvljeo4onR7RA9/EgENbUPzbJcjd+w0U/6Ynys67NnngUKQp53+o0eADGN8ea0AwOrgTsR1DpoeoljASX9dch53BKtwOyyFx/sG+eg+Feo7AR+WWYf6kJVhS6nPUcRPhspnIdOnTaQUD7I7bDalWfQSqY2uPlNjc4CdUq5sEQdLuwyZVxOqYVrgRcRYDP8iECYX+c+2Uy/IdDPgODV+GZc/OxZ0UaXFbaayPuoAcvd/7cO9kfFTha/z4wjbsbtvW/2vvvv92rv//j19f53mS7TSzS9myyYhsSlZmSBlZpSQjUlZCWaGMkBEVSTYpM9l7lMheGdn75Hx9fzhpff6D7/u8/XBczsvlOC/H6348nsdxvJ6P8Xw8KDb7U+TZCpl6BvXCssiUYS0a/lEcnfOGiP0iQM/EDTDq15xYNShnptXjsapbRRzsC8lfSYi5iT9HzKoqSFB7DgoLijzzX+P/uww0NgoiRASQMmM6FC1bFdt2/wpxc9KCCERG3sWNm3eu34rBuTN/4srFy0iZJBLJU6VAiRrNYdVq5Hrs8YtHtiLR+XM4cfg4ju0/iDQpk+L8letImCAiiLrnwWCZuCxxnYZ1kTPfEx4khyP+HQLKkBbaXAbnzyHl3tP4IuoWXjo8ockfF3F2FnRofxtNzmXFxDkZENHiHPYuPoPMrz6T+SLciFiBa57DkWV5kSP9HVx9cwHyHlyMXuNydQ0fxghJMOv3Z3A80zk8Xy8a086Mwf51zxWsAenKt0TMz5P/uxS1B6Nywlo4MmfQtBwdYcEtpL9QC3ebdsD4Zj9g6tU+mNrioZuJt6DfqU1oMGsj8nfri+QhXLYNCT5Ih/bNfRmWxMVVlfHj5+cxtlVKTCkYg683VUMw4nd8OW6vPVPRa8FcTEuYAS+1HA+vpkXZMbf/Jb5aceRM0R6d6pZAGRPwyUNPoc71CnitWObqW1biUo8XIeiGegdzoekHifD5u/Bq7Yu55y1E9T4DsLRLf/SK7oPXzq9D1bMnMHdbUVj1dfuli7At8gS0HI5CnUJ82DEnlr6cFI/UuYWNH7w0udczaNmtEHp69y/5uduuRo4utTHt+wTTbv6MH68kwLAUl9DrzDSs++kSZqYqj347YnC8wOw6iyajUa2pGByEeK59E7zXYzJ6RkEzrTBj61t3Dr+Kud8Xxadnt+PUrzEoNXkLWvbIh88rTcrTpRUqp12AHStzY+nqHIi9E+KdvAGUui++75fL0UEStL28BopsRe5+b2L/hzGY1er0vjLPoVO/H/BVjgGYHQ5Bx+Akurc/hG41RqNXn/XvtZ6Om5my4402RdHv3jaUHV4cRx/NjEXHQaKBf/48ATdegUNBGrwY7kKTowvQevI26FRx2bpZaFumDgb947Pz0qQPkP3CFhzeUwJri++atvwYft/aAY2Hl0Li2oMxM1MWtAnqYkimK9/l2oTd9xphzbNVUGNsFeTI2Q0fvH8P+xcmwYyBQ/2UFQXLtUDYdYgHI7CK9LmODJ++gaWFGqJPlujvnjuF5TGHELzVAx/v2Ybku//ZyZQRb0D2tci38RRGDaoN5zphwfBDkHwBKvZt3bzOc1hyZitOvZMHBZ4ch3ATvPD2IgQlV7+1bAaG1bqN72pvQt5BAQZmDNFz/nzceaMPChXM8sQQ6JLxIVxuDf2/HoeYFFvRu2kTVA77oFnyLU/8Ghe13f2X/PgQUDzxxBPP/yj/rqSMBLFhGBEgUWRCPJKnAJImT4a7t2Nx/cpVHD32B85cvHr+4iWcPHoUN65fQsqoZMiSqyhKlKuFFGkfR8ZsWXf/lA6/H/gdwb1LOHLwCLJmyYRLV6/h0LGTMTdikSRxFBImSY40D8e1DEqKqJD/cxJ4qk/R5qfmOFezENI9XghrDh9Go2/O53nnEpJPikCdPdvR4VgifNB6BtK/0hl1ppXD4QxX7qZLgXpbOmJfbF6EmcehzPkqkOY8hjVfjzlpE9w4twZxxzZb9p8DC6Fm4Rxot7A+dpY4UXBpDnhmMt576v8sxexz2HZ3EIpW1DvdN9igEZalnoXexuK3OqBxWQxtsaFrixQY3O4LTNnUHH+A5LvXovq1J9G/9CI0+OLJpmeHYv3emYh4bR2IQYv3T6FSo1ewLtFAlL41y/SNUDQJ0lcfD/2hyg+/YN5vI/6pvdUPMLn1OKSaABM/i8TUmqMwsMky1Ms88lLOLxF7byQi5lTD2dg1OLP2EGaFL+KYYHPQGC+OuYFzP1zEjw374GLaRxFtKJpWfxydry6afng99rc6goK7hiC8MwlzZvyO6seO47OqWdC211MtB9fG4ln/tf23Y/aia89iyLMvw8MLv8GX4cfoqTFWB9NwcFSAN4t3xbquLXCrQt9d736EneEUVB/VCcU3RWJzvQNYWTUXig6Yj0QL7hU6nQ1h0Bvd02dF1vQJEGw7jRZpAlw9H27PfhNJptbGrd4hCmfqjTG9PsXg6Lwgzim3a91EZMl9FcUHl0eng9G4oiqW9D6PZ4/n2v/OMeQcWBnPVn4La32C53ukha9D7MqxDMnaJnn/UiW0zl8HRQ9WQ74ZjZA4yIF2S35FvadDdO9Ys/e2hfi49zY8Uu5xFBHiRP4AfeeESGBqhSGjsTFchEH/+PLmeA+WX6mDw5MW4JmPjlwrmRQdF9fAzBl98HWKNmg79gscaFcLOcYfSWs91jmMp1smwOeTV+PAb3vx7aVY/LLgCmYXrVCp3ErkbBRgj6wYKDF6rmsDb07CW4n6YvLKTVVntEeDqaMQDv8ZQTgQO188hF4z7r+B19euwugOVTDt0RIY1WosnlMVk4/XRMtP4dHgl5enN8eWeYVQVGdEXwmw9MUQn87Pgq93j3117/M4M+E77NsToOfqZ1BrHDw7bAwyHxuPXbs+HflLgGLHzyEcsBQVC23FkBoTkHXLTbQPpmNGzKl2HxTF3ngPIJ544oknnn95ALFChEEQEVcHGhGBiAQPIdFDKXAt4TWkiOvhExnnL9y68ucFHDt5GsG9AA+lyoiSz7yAREmTolDxwhAmKFbhGezf/TMuX12DCxcv49SZs7h1NUTCiAQPJQyQNGECBFEPIU2aDAjizpHF9RmN/dfd64Whr0G21UgX16lmH1TPfRvdV17adrQSrmfbjCnHsuG6BIg6mBHh86VQNsMtrFu4Le2BXDjbsgaeGrkXe+41hq6pwEnMu9QHDUsOP/olXKnaFCNXfo/x+yKgczKkXrIOz5YYPOYi1D59FcVOJv/PSkyJOIM9yaHoROs/nInRQYj3wq046zzerPAZlmzMin1mrJ/yFtrFTdk9uRRF1s/G+gZRWK4PZp18ES1/OpSs9n4Mqh6N+QumYm7GQ0jfZiVujfsCJao2wue0+rwl3n+5JerPXwC9L6Fm7+ZIuj/rP8VX3DwE/R9rhhUpE2HN9Gfhyjq883VCvBv+9MHUslgZdRwVVMSnw5bh59Z9sHprDdR6JFx4Dsa+HoX2ZY9gVtwmsXNbtDt2AIcLd0Hs3D0/jsqPlYUCDL16G3N+fAX15rTFhl13MEIbtPV9mp6fY8KlkxD9t/5vorLj8SHLEeuxL0/H4EsXUG5VIxxbtQLvXIE+p0JU/KE6Wi/pG27si3FBd6QMR2FITA7MPP8qingUC0ViWIV9p0d8hJ+O58Oo8j8g2eYQdgXY0TlE8k1rqiypgLDgUHTvG2DmqWmonao5Xn0CxjzIRB5q+RVOBlPxyksn0Kz9l3i2fn5kLl4aYdb1T90J8HPS2Sj12FO4uScXOr7aDt2P/IEPu1XDszH170T1wKryk7Bh9WKM8AiCDWtQ/ukQFSc8jOtlzibZthIXPsqNNIuno+b2AO8PiEHU+wFW3La3yI9I9/Gz/s3TnweoXLAQMlwagIyvXwuaZ4aGy3AjMi9e/mYaDgdFMFEbDJhXpcXgWphX40OY/AvyBOkR+BhnCgzGZ5va4sS2FWNbJEP7qUvg9RAFwhq4EqxEg1NfoczeBrg48aFJfb9F2DsaPgpQIevbSHyi3D/Fv159KqruLoKdS+ahRtAED40IUXQ1pB20A/0HdxgaVMD49Dvx3HPdMHvyWrT+Fj5J3R8lt3cfOLckVj71Nr7a/ANyvVYG20JY/8YFXE5ZEluvhsum7IYj3VGs3CfY+mhzD+auj37xDqaGAc4IZ2Wfis/+oT/eA4gnnnji+R/l360g4vb9Dx7iimyeKlsOy4uWwKbVP8BdOHf6NE6fuJBCBC5euIaoRElRsV4rZM2R14N6qTBIgCAUnfZhlKvTAls3b8Ot67dw+o9zOHsjAc6cOB4VJESK6BRIn+1RlHumBiKionAvNkRE8K8kQPKum+BEYhgDOhxC9OSZKHW7cKLKdTH5+AbsXLgZI2qew4gd9dF+UBGsnv44mr0Y8bvzyLHtJq53zo8PN0IDcO5QiHTX+qLWI7Pbf7kX9ZxGdJ5YxKbPgQtL92PQjAw40u7dOou6IkvGaDTM+N8qoGwtoEXcmKcm7R8bPxtVXtqI37yHMHlhvD/jJcgYg4ljXw5fjsW8bWmhwFPY/ks/CEbiiTtLEJNxKwqN2pzghcnY8xMcWtgAi76di/UXX8PC+h/h9UT3UN8tJQvj5oa2yDf2Iraaim1vvQ8jPgJD4sQ3L94dl1svxM4xa1AueYj5z8L1RaNRf8jGWsPG4HCGTFh9ehRG/vYHcuQuiptBiAWld85880+8kOQE2r/WDo1Gz0fjjp+hSOecmKcrhjd/YkLzYRhTrR32HZyOoDeM7H0Krb64iy31E+PYcz3/CG+i+rBc/zH+7ln98NPXQ3D8y0GGNEY4HLJM34M7I0Osup0OY1MH2BeURu5BYdBzDIaGOdBhw2ko/Rvm3L2Iyx5DkhubMKxZpnBlV1iZCnVCmKUV6k9eiEzq48iT3ZYvjoXc9VB9UEMIzmBfCBFxo8DW3hcfqIus+bPjSLEd6PHGMNwamQS7HlqPoPw321I1RI8BDXCxc4g9QRtoCunaZcDlqtOx5NW2H3/6As5OO4tBKiHR5w0wtPsmvNVgCYLntuPZxtfSrHkTPy9/GKfaJsPMMY3RI0kU+j71BNJ3G5Kl7kPoWqUqdF78l/HXmIOeaeqh7KqeeC5Fz+u5kmNx08+QZFM7tHkiAWLkwICpE1A150ffrl+Nq4f2Ing4Ffp5DcITOOUmnq0NW3pcuTH1MwR32sGfx1Dz8QrY1OMXpHr4Hcz94QxSv1IzeH8X2uSDid27IKxUAM+diMvClYkTPyBdFzx+rhR6f/IMJr58FolXDMbdr6rj/IsNUXhy2izVVuCL3tBy2j00eL0ravy8HlurLMLvvXt3+x6qFEyDdWtqokGPHQgFePWxncg8siDWVn6rR61t+OPk40hz+Suc7LEOp+ZFoO+vAYbeiMbA3k0Sxg6Af9S/xXsA8cQTTzz/o/z7IFgEcS0WghCBCJz74ywSJo5Ctlw5cfTQUYRXr+PmnZu37txB5izZUKRUJZSsWhNBEMEDPyKM/ec18hV4ErWbtsSO1Ytx+eZtXL5+G8mTJkmQPAJ58hdAstTpsX/XbqStmhGRcXv/f1cB/b4pEXJkSITDr0L718oh5vdTWJXiqV+W38Hk0jdwackNvJ0rD86mKYZEpXKietGRuC7n9Ru3sS5JHkTvOY7NeavhEjhyrwTWJvsJGVuWeS11SuSdvBIztw7Dw3UnY1CNKsjyclpMt+nC0oIY+Ptj+PaDcf9ZibxWoZjy2FrB4dbfok+mZ5BdJ6y5mg6/fVUH3e/tR6UOKZ/tkRxhgXnwXh0c6NQXS1KlxPMJcmJjhUoYuaj77WAHIsLCWPoIrL9YF82GdoVCQzGuBTT+ptInvT/Ae4ln4NkPh+KrJhuQ6ZGs2NDwPfjmgfrRIT5LGuD0q2sRDJoAi9tgWY3XsSPR6y2/a4mSpd/A+Vx/Ys6Armi54glUbgpH8g/u/vY6nB45HxuXz8NDb+xBgnt9cS1yKbKrjtLPPNt/6V48ZDxGP7cK0R+GuPQ25G4Oz3gUP65KruObeGfRMax80E8fyRt9hvMFE2FB/zmbh9VFD6PwXpeZ+GNORTwxPR/yLFuN1OEdXKDPkYtYn+Yavkq4Ga2e2oebUSEu9++MJNm2I3xvc+YE03Dy28zI5HuEcV2pt0zBqFHfovtUS03CK0/MQclZS9Bi4QDk0w1Bh83//OQcMQ+P3lyJtm8MxqQvJ6Dpm0swZuTTOD162o+vh8jZOSsSHX8ZKx67gYvR3yBVjq+QPuuLeKndgWMJ0+DItT+xOwjwxKedcff8bEQ47sE3O7ZTOOKXHJg1+RFUWXUdv0wdiuDGGIQj9yBT8WfXrBmAz55egAn3Kw7h0ZEFMDAYg6DdF/h+XPee+6+iV7ATH4UN0V0X9Lx+G8p8gc92jUoxoBr+GLcIwqX4PkiHvakaIt+7MC/fAFQbvPvlNh3RoNYxnH9oCxbsnY0diQejcMWdmLeiFPpIvLAxtJ7ZDDebfomCVb/C/uGR8NZ98VNvHcWn32fH0o71UGLEQlxc3ROaL8ecDW+iboZiQdoy+OncSuzf1B1Jv9iAxp8EWLQ9JUZ32tz9zCZcP9IGScpOxzRPoOmRH/DVoRUYXn4ZOlccnspEXDz9MYKMbZFk1lsYEJUSVbb8gKYlNuMp5+o274W5//AA/vUjGoZh3GOcrxGGsdiwegUezpoVCRIkwMwpE7F65RIEQWT+HNmQKXMmvPDK20ifJSuCe/cQRkb+8xLBvb/DTFcuXMDcaR9jy+YNOHTiPG7cjnmqaEk0bf86MmZ9DDs3rUWhMmWQIkVKBGEEIiLuv4Xwy2s43OQ7zBv4GXou/AnRV9Oh8p5zq1JkQ94rx7CzRzcMvZ4ZCUd1wgtbQTF4z63eH+1B0L04YhxH1C9ZMWYFVO0I+TbexeJcx2vsy466l19Ajz9uYG2/R/FzrgV4u0ErDB+34pG3quHy5GyoseAOnk/S6m/j71iMIYVyIrpDjjljZ6Fzi4GoNqUnEl5qjHd+K4b6T27FlEkHh4WP4nrLSByOSoIn5k5GbNQUTK45BM/M/AKZr3SL+WYNSlf5E/2zJ0LFhuPw2d3Z6H0tCr9F/4ERtQtc7NkRQ5alxzdbo3H1fDE0WlcWEWdvINPD9w80R484hkt9s8LlW3jvUCLsKH0IC/54HOHdeh6eA70TY/qximjedDEaz4SZH+1Db7k7P1Ue0XtWY+/laEyddgn3dgcY1hRmzTmPiCs1to96Gx/sGY9XD32NTn1fQu6tC3Gx2ARs6FwUuYuuS/vsdpQceA37Xvy7GrTn2BCDOk3A+NsvtFucHPNqvIluc0bit3r5cKr0L8i8fikWBNXxy9kvCnd5CcunRaBRjo1YcbAEalXvhP27CqLiqQjU0e3DBVnw5KrtUOBphJev4/ukj6N6VGecGXau4555+KbOPpg7AIKNEDZG69VL8HmF+82AVrUMUWzd90jWNhF6fVgBA4+HuHAwwKqo9UdbJETn5/ogZa8/0css1BWDhbOvonP9rLDkj/nP58O9opPRdV0lXMuUE2dW3kbhPKews/9vCBPNPDy/OcYnfQoFT0CzlyDxnD1otKEAfvnI8O7JcHBgLFr0uvGX8WftgkZLwC6ISHqp0Hcp0WJcYfwcfI+1WZfisV0vo2+NAMcf1icIsa4VZB4LEn0NzZrgk4LvIm/3irjRt1L9qtGIKVsfF3yOZh9sxOLKJbHmB9g6vTPes/B6t5L47aFt2P/FXdRM9hs2tK6L0s/NixO/f0OIHSXz4/FgAR7/ZBVSvnAI0v6EadbgJafjTmB9+3QjrMk7GNmfbY/O36xFeLUs8sz/Ot/nq/HMudRY2P0qbm2bjqHTf0eu51Mj8fIQrUs9vG7JSfxaOwHCZSGan+uC6Qk+wc7dd1CsLsR0X9UiqICp/iY+BBRPPPHE8z/Kv0NA98tAuXfPg56guZ8ogNTpHvbAX6hTvylOHzuMa2f2HT9zDZXrVUbajJn81VU0Mvjrb2IRhhGRkRH3L0WK1GmRt0RlLF/xM1InuIPMmbNWrFsfeQsU+eufiz71NNyL+UtGENz7p/gjW/di2MzR2FngOJpnhU3pa6D8my8VKfwqukxtiTU/70TSjBGIWgrKbMQZOfD+1eil3YvhJnh+Z0Icj92MTslKgNtYWzISNWT/tdR6DLv5NdJuWoljhxOjvLwooQPeblN0VZ4hOPrbbqR9t81/VmJ654qotiIR3qw8p7dyyJl1BybNWImlW6BSv63QaTEmjqrxwgvzkSB9bbxfeSk6102IRT8Ox6Dv8kLjD7HsgwOlR2TClvxJMblhdSRO3hyRkQEGVR2IL378DdXyHp+z/XG077MLk4LZWNga0rYPUWdcln+Kb5gxK8q0hRZhYsgYIvj9AsJRIdIk9We7gRjR6R10Dk5i+Dc18fWJ7Qh/qIXi2ze9UPwMGleCpbMqoNgeuDAkRJVh7+DD92dgazA9T7tc8MsjGFNrK0bfS4r+EefRNTYNCt3qjDfONPn2WBVIX+s/xm+QtDTSFtmA4u+sGPXS11g7Yghe2x6i6ZGmGHJoIqr7DsslRa30zUsfSYE7P43CuUKN0O2nEOuuQ50ceRGe/hWv92v5VIFzCIt1gqZHsG/yMTzTqgt+qlIaZRP/nCFHApyc+zVmy4Y3v56AN0Znx6TPk+LzB+Jv9yiN5O3h8be+x+UMiRGWOoOL21Igv1nPvzMCT+cM8dg2OP9NW2ztVBO7Wu2E4bUQPHc9nP8GnKqOehOj0On0bbg+BLl1Q7Xef2Lfo5/OOz8Im/+ogQ4nryBtFGTuvhgf34hBdIWo1wIoeOAg9Mrxl/FPFQihCEy7+zGmiq579xvcvZwYs1qVQFjgOBTdiKB1JbDi1A89kDEYjOc/y4vvZu9D8uPZMKJzJXza/R7Ofnu4wZLLuBZOQveYnRi06zJSvZEPw9bVwO1wJXYve++xIoVxIl0BXFxwE7/OSoHS344G9z2AXAn6Igy+RUx4AsNWfI+iaWdi6M6v8GrBUtgRZCgsIyIb14XkxzGhLoTLH0EwchLCEY2PtnwXcw9cwPzJk2HnKBjZFEOHt8Hn5b9EqzfOHpxYFR8+VgjaHsOpFt2RqNdwFFwyFycn1MGuL368VDaEtX8HfuI9gHjiiSee/1H+nQO4F3qQCvag4X5sEHgwgDcMQhzY9xsunj8Nt/+MTJwOhYs/hagEUTzY9t/f6//9ImEYxuVvY+9fO8TdmFhsWbcKl45sRcqMOSOSp0ap0uX99XKxcd5JxF+qA/cQPJgLtmnmu+jfYRiis93C4PBj/LLjFaSwsfjGxNhRshSKXQfT4V47iNwHG+7dw678d9t2nYgd3VMje/omOOBHPOYSFtqGl755H0cbRj5y7yaORibGl5egZ/QG/C4n7m91DqTRbRfq1lmGr1p2QZLg7xvw2M3X0ax4EnSwrLVqqPjZeHQpXRCLP8+NX1+NwOgft+HYykoTZsELoNVX5zC0STokWH8NFUrHoo3xCA5cfT1hf4x6ZDgO7EyB9lcDDP1kAbL1O4whuXeh1u9Pl732PKb0rYDUTzfD92/NxxMxZ1G240kU+KzhffW3imFNmS0otxXiDJx0Wz0sDeoh67UX85c7hxt50uGzzwIkKL8f+8IdGD21Ed5uEX64pwPkH4vd2iOFV9DLafTKUgulTzZB2vcr1HqvPcY2WIfWB77AmJ3JMClchkK+xs4gD+rlE7P3Bg72KYfS/bf9Zfwq4Un8GGTC6PD66+N+R7MO+9Av21LkOFoVcbm/KVMS4OUdJzCjz5ZmqYphU6VtKFmtGDqnmI8UuY6h7+TTeGfGIgxU4EjWhvhoax2MTd8ercViYvVy2JT4DFZlfSvZaAjezoluN97FtWwHMHRQJwy80AAXgzX31Ye9MeeTfkjUcQrWJEyEwTEfooPtGOtbDzfA6I8vo2Pj7giyr8AvHsf595oic+s82BWUqLs6wNTdE/FywlcQtIVwSYgGz3yDb99IjJeHz7gUVQn9GkzB0kuV0HvCANwplx/5Th7B3ievtd20CJl+q4l+uf+yvbD+FMj8MrJ9nBADIk5X0QrvFEuMpzPkRf1FfRD9JxTveAUjIlJ0OADNikCepefx/NdpcfsabKwC0wJoGAbVy+bBDz+PxZlqk/Fi4RUYuP44Nv4U4FGP4HiOoy1/L4EpfTbj6b5wNdiHd8PcPGgjR80eIRYOfh6HjcH4WlVRcf5qVM9YA3bkxKmf82es9xvKbZ2C5GU6Y1uSj/H7xQxIFpxGjolBo1dW40qJp/Fp4v74s/JB1Ow9FeuK1sCfTy/GoyNLVGpaBPO+LIk2DV/BrG9ex9Z30yHHpJ0w6wyCi1288Dz8nX+J9wDiiSeeeP5X+U8Z6P3ofRDe/evZuK7L9wKIjIVUaVIj+yPZEZE4YehvF+H+WbK4je29WMTG3WMiITK838Et7rYTF8KPjIpEqfKVcO/p8oi4F5w6eRR3w1gEAkRG/NNZCREb/qu+qNivrZCs+k6kLdcMO0tuR+ztJMh8IHdkydkodrYUYi5NQYK2ZRB59BLkyYVS06+hVP4shlZG4ZN5MMlCPLOqOG5USI3GcxtA4pNIvjytyonxSCz0jIadtuJXpTzwAPbn3JNrbjbM3RnXB+7fRay0n5EE8kLfpL/k+L4a1rRth2HTWmJY+8mQbRlGdEiDQ5EKnMiMfA+fRPGyq9FXNeQrPQ43J7XGrl0psbBblopZ3oQlHyNn5cWY8XYMxlRdi/5HYrHsELSbtmzexE2o/eqTEFMBp3yEdv3GY8vH6/n7UHn4UEt4MT1OrCiPvpUaQ5k6+PFWcxzZusCpEjjdej3y51uLJmuew5/r9mPH42txfvATST94CX0mQZPE43Dg+anYcv1lTD8Y4HKxFbjUraLHkqBxs9I4tqY0xkx8DSeuzkbqO69i+6VliDrujeeTYsV3Vbjf2y6OH8Znw5qCb+A3b4TJC+GOW3joka4o4iK2RT8JH5ZF8HF3bOh344eye5Gp2++odvQsRrRPjzIbG2Bxzi3YFPRD8P20ZN8PxrXHd+Di6/OQ6l591F6WH4V7wKLBXQa3W4sy29Kjyw9N8PKvCTG1MSxaVwyrPPAAnq+P2fPvIOrjFliYuxu677mBj6ouRK9lkbOdR0cpEfFyiH3nCqLi2iX4UYDHul7E8e+aBGlC7OxYE9+HUOFeiCkb4FKBa9C0ET6OKn/Xyxg4OQGu9GmJmOx9MLLhS1gR+QcS5hbTpzg+Wn7/l+Iv44/v3gKpSjZHnlExqJJtWKaj0XjSVESbgfcbQbj8FfgqM5KExQ9NWI2xZYbi4vgp0LwrEo6phKfrLceX4RuofuGk1zvgybUVMf7JEPVPV0b5k32ROxyKYZO74HKuYE3nTbhU4EekqpsWmVJ3gYKH/YPoQQHC2rB1wXcYNHcvJE+Lt6+FDxR5afq3DXvsxNrB9TBt6UHs/KkZOp2ZjtHvpMTaBNEZFca6mDkYkm0rHis8H3uybEe/bbux/svOyB9mml9mAoKGQ1A+a2v81OxD5OiQDB3ffwGfLlgItev+1/TxxBNPPPHEE0888cQTTzzxxBNPPPHEE0888cQTz/+v/D+hqXfa/IXomQAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "timesteps = torch.linspace(0, 999, 8).long().to(device)\n", + "noise = torch.randn_like(xb)\n", + "noisy_xb = noise_scheduler.add_noise(xb, noise, timesteps)\n", + "print(\"Noisy X shape\", noisy_xb.shape)\n", + "show_images(noisy_xb).resize((8 * 64, 64), resample=Image.NEAREST)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q7hsX6nDZiYm" + }, + "source": [ + "Again, explore the effect of using different noise schedules and parameters here. [This video](https://www.youtube.com/watch?v=fbLgFrlTnGU) does a great job explaining some of the maths above in more detail, and is a great introduction to some of these concepts." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o5RvxO2ss23-" + }, + "source": [ + "## Step 4: Define the Model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gHiMIrLRTk3K" + }, + "source": [ + "Now we come to the core component: the model itself. \n", + "\n", + "Most diffusion models use architectures that are some variant of a [U-net](https://arxiv.org/abs/1505.04597) and that's what we'll use here.\n", + "\n", + "![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/unet-model.png)\n", + "\n", + "In a nutshell:\n", + "- the model has the input image go through several blocks of ResNet layers, each of which halves the image size by 2\n", + "- then through the same number of blocks that upsample it again.\n", + "- there are skip connections linking the features on the downsample path to the corresponding layers in the upsample path.\n", + "\n", + "A key feature of this model is that it predicts images of the same size as the input, which is exactly what we need here.\n", + "\n", + "Diffusers provides us a handy `UNet2DModel` class which creates the desired architecture in PyTorch.\n", + "\n", + "Let's create a U-net for our desired image size. \n", + "Note that `down_block_types` correspond to the downsampling blocks (green on the diagram above), and `up_block_types` are the upsampling blocks (red on the diagram):" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "fRGXiotOs4Mc" + }, + "outputs": [], + "source": [ + "from diffusers import UNet2DModel\n", + "\n", + "# Create a model\n", + "model = UNet2DModel(\n", + " sample_size=image_size, # the target image resolution\n", + " in_channels=3, # the number of input channels, 3 for RGB images\n", + " out_channels=3, # the number of output channels\n", + " layers_per_block=2, # how many ResNet layers to use per UNet block\n", + " block_out_channels=(64, 128, 128, 256), # More channels -> more parameters\n", + " down_block_types=(\n", + " \"DownBlock2D\", # a regular ResNet downsampling block\n", + " \"DownBlock2D\",\n", + " \"AttnDownBlock2D\", # a ResNet downsampling block with spatial self-attention\n", + " \"AttnDownBlock2D\",\n", + " ),\n", + " up_block_types=(\n", + " \"AttnUpBlock2D\",\n", + " \"AttnUpBlock2D\", # a ResNet upsampling block with spatial self-attention\n", + " \"UpBlock2D\",\n", + " \"UpBlock2D\", # a regular ResNet upsampling block\n", + " ),\n", + ")\n", + "model.to(device);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y7lkJym26QRo" + }, + "source": [ + "When dealing with higher-resolution inputs you may want to use more down and up-blocks, and keep the attention layers only at the lowest resolution (bottom) layers to reduce memory usage. We'll talk later about how you might experiment to find the best settings for your use-case." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "483LRBfs0C5_" + }, + "source": [ + "We can check that passing in a batch of data and some random timesteps produces an output the same shape as the input data:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SmmxZJYM0KwA", + "outputId": "78bb996d-a28d-4fc4-85cb-42636b9f7a4d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([8, 3, 32, 32])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with torch.no_grad():\n", + " model_prediction = model(noisy_xb, timesteps).sample\n", + "model_prediction.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mIhFUbFMZxj7" + }, + "source": [ + "In the next section we'll see how to train this model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vbcdWagYs7tc" + }, + "source": [ + "## Step 5: Create a Training Loop" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EGQjvwOi64Sl" + }, + "source": [ + "Time to train! Below is a typical optimization loop in PyTorch, where we run through the data batch by batch and update the parameters of our model each step using an optimizer - in this case the AdamW optimizer with a learning rate of 0.0004. \n", + "\n", + "For each batch of data, we\n", + "- Sample some random timesteps\n", + "- Noise the data accordingly\n", + "- Feed the noisy data through the model\n", + "- Compare the model predictions with the target (i.e. the noise in this case) using mean squared error as our loss function\n", + "- Update the model parameters via `loss.backward()` and `optimizer.step()`\n", + "\n", + "During this process we also log the losses over time for later plotting.\n", + "\n", + "NB: This code takes nearly 10 minutes to run - feel free to skip these two cells and use the pretrained model if you are in a hurry. Alternatively, you can explore how reducing the number of channels in each layer via the model definition above can speed things up." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Waw8nGdO4S-O" + }, + "source": [ + "The [official diffusers training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) trains a larger model on this dataset at higher resolution, and is a good reference for what a less minimal training loop looks like:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UFRXBcyGs_uO", + "outputId": "59f191e5-8f8c-467d-e62c-03274cdc58ea" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch:5, loss: 0.16273280512541533\n", + "Epoch:10, loss: 0.11161588924005628\n", + "Epoch:15, loss: 0.10206522420048714\n", + "Epoch:20, loss: 0.08302505919709802\n", + "Epoch:25, loss: 0.07805309211835265\n", + "Epoch:30, loss: 0.07474562455900013\n" + ] + } + ], + "source": [ + "# Set the noise scheduler\n", + "noise_scheduler = DDPMScheduler(\n", + " num_train_timesteps=1000, beta_schedule=\"squaredcos_cap_v2\"\n", + ")\n", + "\n", + "# Training loop\n", + "optimizer = torch.optim.AdamW(model.parameters(), lr=4e-4)\n", + "\n", + "losses = []\n", + "\n", + "for epoch in range(30):\n", + " for step, batch in enumerate(train_dataloader):\n", + " clean_images = batch[\"images\"].to(device)\n", + " # Sample noise to add to the images\n", + " noise = torch.randn(clean_images.shape).to(clean_images.device)\n", + " bs = clean_images.shape[0]\n", + "\n", + " # Sample a random timestep for each image\n", + " timesteps = torch.randint(\n", + " 0, noise_scheduler.num_train_timesteps, (bs,), device=clean_images.device\n", + " ).long()\n", + "\n", + " # Add noise to the clean images according to the noise magnitude at each timestep\n", + " noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)\n", + "\n", + " # Get the model prediction\n", + " noise_pred = model(noisy_images, timesteps, return_dict=False)[0]\n", + "\n", + " # Calculate the loss\n", + " loss = F.mse_loss(noise_pred, noise)\n", + " loss.backward(loss)\n", + " losses.append(loss.item())\n", + "\n", + " # Update the model parameters with the optimizer\n", + " optimizer.step()\n", + " optimizer.zero_grad()\n", + "\n", + " if (epoch + 1) % 5 == 0:\n", + " loss_last_epoch = sum(losses[-len(train_dataloader) :]) / len(train_dataloader)\n", + " print(f\"Epoch:{epoch+1}, loss: {loss_last_epoch}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5g3B7J2y36o-" + }, + "source": [ + "Plotting the loss, we see that the model rapidly improves initially and then continues to get better at a slower rate (which is more obvious if we use a log scale as shown on the right):" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 256 + }, + "id": "DoZP2oHHfL3R", + "outputId": "fe16d7a7-8684-4263-b859-fdc6ac254433" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAFfCAYAAADOJKb0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAACj+0lEQVR4nOzdd3xT9foH8E9Wk5YuSjcUypKypywXaAXUq3JFrxvlKirK/al4Hbhw49Z7FeW69arXvUWUrUDZQ2bZlNWWUrrbJE3y+yM9J9+TnJMmnaH5vF+vvmyTc05OQm3ynOf5Po/O5XK5QERERERERETNSt/aJ0BEREREREQUDhiAExEREREREbUABuBERERERERELYABOBEREREREVELYABORERERERE1AIYgBMRERERERG1AAbgRERERERERC3A2NonEAin04mjR48iJiYGOp2utU+HiIjCnMvlQnl5OdLT06HX81p2U+B7PRERhZrmeL8/JQLwo0ePIiMjo7VPg4iISOHQoUPo1KlTa59Gm8D3eiIiClVN+X5/SgTgMTExANxPPDY2tpXPhoiIwl1ZWRkyMjLk9ydqPL7XExFRqGmO9/tTIgCXStFiY2P5pkxERCGDpdJNh+/1REQUqpry/Z4L14iIiIiIiIhaAANwIiIiIiIiohbAAJyIiIiIiIioBTAAJyIiIiIiImoBDMCJiIiIiIiIWgADcCIiIiIiIqIWwACciIiIiIiIqAUwACciIiIiIiJqAQzAiYiIiIiIiFoAA3AiIiIiIiKiFhBWAXhRhRWXv7kSf/tPTmufChERETWTuz/fhL++sQLbj5a19qkQEREpGFv7BFpSrcOFdQdPwqDXtfapEBERUTPZfrQMuQXlKKmytfapEBERKYRVBlxf92wdTlfrnggRERE1G7PJ/YZfU+to5TMhIiJSCqsA3KDzZL5dLgbhREREbZHZ6P54Y7U7W/lMiIiIlMIqANcLATiz4ERERNrmzJmDzMxMWCwWjBgxAmvWrPG7/ZdffomsrCxYLBb0798f8+bNa6Ez9WU2GgAA1loG4EREFFrCKwAX1n47mAEnIiJS9fnnn2PGjBmYNWsWNmzYgIEDB2L8+PEoLCxU3X7lypW4+uqrcdNNN2Hjxo2YOHEiJk6ciK1bt7bwmbvJGXCWoBMRUYgJqwBcbL7m5EVxIiIiVS+//DKmTp2KKVOmoE+fPpg7dy6ioqLw3nvvqW7/r3/9CxMmTMC9996L3r1748knn8SQIUPw+uuvaz6G1WpFWVmZ4qupWEzuDHgNS9CJiCjEhFcArmMGnIiIyB+bzYb169cjOztbvk2v1yM7Oxs5OepjPHNychTbA8D48eM1tweA2bNnIy4uTv7KyMhomicAZsCJiCh0hVUArheeLdeAExER+SoqKoLD4UBKSori9pSUFOTn56vuk5+fH9T2ADBz5kyUlpbKX4cOHWr8ydeRuqCzCRsREYWasJoDLmbAnQzAiYiIWo3ZbIbZbG6eY7MJGxERhaiwyoAb2ISNiIjIr8TERBgMBhQUFChuLygoQGpqquo+qampQW3f3OQ54HaWoBMRUWgJqwBcp9NBSoIzA05EROQrIiICQ4cOxaJFi+TbnE4nFi1ahFGjRqnuM2rUKMX2ALBgwQLN7ZsbM+BERBSqwqoEHXCXode6XMyAExERaZgxYwZuuOEGDBs2DMOHD8err76KyspKTJkyBQAwefJkdOzYEbNnzwYA3HnnnTjnnHPw0ksv4aKLLsJnn32GdevW4a233mqV82cTNiIiClVhF4Dr9TrA6QIT4EREROquvPJKHD9+HI8++ijy8/MxaNAgzJ8/X260lpeXB73Q2XT06NH49NNP8fDDD+PBBx9Ez5498d1336Ffv36tcv6eAJwZcCIiCi1hF4BLjdhYgk5ERKRt+vTpmD59uup9S5cu9bntiiuuwBVXXNHMZxUYzxxwZsCJiCi0hNUacACQ+rBxDBkREVHbxAw4ERGFqvALwOsicK4BJyIiapvMdRlwzgEnIqJQE3QA/vvvv+Piiy9Geno6dDodvvvuu3r3Wbp0KYYMGQKz2YwePXrggw8+aMCpNg1pFBlL0ImIiNomNmEjIqJQFXQAXllZiYEDB2LOnDkBbb9//35cdNFFGDt2LDZt2oS77roLN998M3799degT7YpSGvAmQEnIiJqmzxrwJkBJyKi0BJ0E7YLLrgAF1xwQcDbz507F127dsVLL70EAOjduzeWL1+OV155BePHjw/24RtNLkFnBpyIiKhNYgaciIhCVbOvAc/JyUF2drbitvHjxyMnJ0dzH6vVirKyMsVXU/F0QW+yQxIREVEIYRM2IiIKVc0egOfn58tzQyUpKSkoKytDdXW16j6zZ89GXFyc/JWRkdFk52NgEzYiIqI2zWysa8LGAJyIiEJMSHZBnzlzJkpLS+WvQ4cONdmx9XXPmCXoREREbZPF5H6z5xxwIiIKNUGvAQ9WamoqCgoKFLcVFBQgNjYWkZGRqvuYzWaYzeZmOR+pBN3FDDgREVGbJI8hYwaciIhCTLNnwEeNGoVFixYpbluwYAFGjRrV3A+tik3YiIiI2jZpDbit1skL7kREFFKCDsArKiqwadMmbNq0CYB7zNimTZuQl5cHwF0+PnnyZHn72267Dfv27cN9992HnTt34o033sAXX3yBu+++u2meQZA4hoyIiKhtkwJwgFlwIiIKLUEH4OvWrcPgwYMxePBgAMCMGTMwePBgPProowCAY8eOycE4AHTt2hU///wzFixYgIEDB+Kll17CO++80yojyABPEzZ2QSciImqbpDngANeBExFRaAl6DfiYMWP8lnN98MEHqvts3Lgx2IdqFjpmwImIiNo0k0EPk0EHu8OFKpsD8VGtfUZERERuIdkFvTkZ6p6xk2vAiYiI2qzIuix4NTPgREQUQsIvANexCRsREVFbFxXhLvKrtjEAJyKi0BF2AbjcBZ0l6ERERG1WVIQ7A17FAJyIiEJI2AXgUgacJehERERtl9SIrcpW28pnQkRE5BF2ATgz4ERERG2flAFnCToREYWSsAvA5Qw4428iIqI2K5Il6EREFILCLwDXswSdiIiorZPXgLMLOhERhZCwC8DlEnQG4ERERG2Wpws614ATEVHoCLsA3OCOv7kGnIiIqA1jCToREYWi8AvAWYJORETU5kXVdUGvZgk6ERGFkLALwHU6dkEnIiJq69gFnYiIQlHYBeCcA05ERNT2WViCTkREISj8AnA2YSMiImrz5BJ0BuBERBRCwi4Al7ugM/4mIiJqs6Qu6FXsgk5ERCEk7AJwqQu6i2vAiYiI2ix2QSciolAUdgE454ATERG1fXITNnZBJyKiEBJ2AbiBXdCJiIjaPGbAiYgoFIVfAM454ERERG2etAacTdiIiCiUhF0A7ilBb+UTISIiombDEnQiIgpFYReAswSdiIio7Ys0SSXo7IJOREShI/wCcJagExERtXnSGvAau5Pv+UREFDLCLgCvS4AzA05ERKSiuLgY1157LWJjYxEfH4+bbroJFRUVfvcZM2YMdDqd4uu2225roTNWJ5WgAyxDJyKi0GFs7RNoaVIJOq+GExER+br22mtx7NgxLFiwAHa7HVOmTMEtt9yCTz/91O9+U6dOxRNPPCH/HBUV1dyn6pfF6AnAq2wOtDOH3UceIiIKQWH3bmTgHHAiIiJVO3bswPz587F27VoMGzYMAPDaa6/hwgsvxIsvvoj09HTNfaOiopCamtpSp1ovvV6HSJMB1XYHO6ETEVHICLsSdKkLOuNvIiIipZycHMTHx8vBNwBkZ2dDr9dj9erVfvf95JNPkJiYiH79+mHmzJmoqqryu73VakVZWZniq6lJZehVdjZiIyKi0BB+GXCpBJ1rwImIiBTy8/ORnJysuM1oNCIhIQH5+fma+11zzTXo0qUL0tPT8eeff+L+++9Hbm4uvvnmG819Zs+ejccff7zJzl1NZIQBqHSXoBMREYWCsAvA9SxBJyKiMPPAAw/gueee87vNjh07Gnz8W265Rf6+f//+SEtLw3nnnYe9e/eie/fuqvvMnDkTM2bMkH8uKytDRkZGg89BjTwLnAE4ERGFiLALwDkHnIiIws0999yDG2+80e823bp1Q2pqKgoLCxW319bWori4OKj13SNGjAAA7NmzRzMAN5vNMJvNAR+zISIj3B9zGIATEVGoCL8AvG7VO7ugExFRuEhKSkJSUlK9240aNQolJSVYv349hg4dCgBYvHgxnE6nHFQHYtOmTQCAtLS0Bp1vU4k0ud/0qziGjIiIQkTYNmFjCToREZFS7969MWHCBEydOhVr1qzBihUrMH36dFx11VVyB/QjR44gKysLa9asAQDs3bsXTz75JNavX48DBw7ghx9+wOTJk3H22WdjwIABrfl0ECVnwNmEjYiIQkPYBeAsQSciItL2ySefICsrC+eddx4uvPBCnHnmmXjrrbfk++12O3Jzc+Uu5xEREVi4cCHGjRuHrKws3HPPPZg0aRJ+/PHH1noKskipCzpL0ImIKESEYQl6XRd0ZsCJiIh8JCQk4NNPP9W8PzMzEy7hInZGRgaWLVvWEqcWtCgTA3AiIgotYZcB18sZ8FY+ESIiImpW7IJOREShJgwDcPd/mQEnIiJq26Qu6MyAExFRqAi7AFwuQecacCIiojZNzoDb2YSNiIhCQ9gF4OyCTkREFB5Ygk5ERKEm7AJwqQs6M+BERERtG7ugExFRqAm7AJwZcCIiovAQaZJK0BmAExFRaAi7ANzALuhERERhIYoZcCIiCjHhF4BzDjgREVFYYBd0IiIKNWEXgLMEnYiIKDx4mrCxCzoREYWGsAvAPSXoDMCJiIjaMmkNODPgREQUKsIvAK97xixBJyIiats4hoyIiEJN2AXgembAiYiIwkKUtAbc7oCL7/tERBQCGhSAz5kzB5mZmbBYLBgxYgTWrFnjd/tXX30VvXr1QmRkJDIyMnD33XejpqamQSfcWGzCRkREFB6kOeAOpwt2jj8hIqIQEHQA/vnnn2PGjBmYNWsWNmzYgIEDB2L8+PEoLCxU3f7TTz/FAw88gFmzZmHHjh1499138fnnn+PBBx9s9Mk3hLGuBp1vxERERG2btAYcYBk6ERGFhqAD8JdffhlTp07FlClT0KdPH8ydOxdRUVF47733VLdfuXIlzjjjDFxzzTXIzMzEuHHjcPXVV/vNmlutVpSVlSm+moqpLgNe63Q22TGJiIgo9EQY9TDWve9X2dkJnYiIWl9QAbjNZsP69euRnZ3tOYBej+zsbOTk5KjuM3r0aKxfv14OuPft24d58+bhwgsv1Hyc2bNnIy4uTv7KyMgI5jT9kjLgtcyAExERtXlSGTo7oRMRUSgIKgAvKiqCw+FASkqK4vaUlBTk5+er7nPNNdfgiSeewJlnngmTyYTu3btjzJgxfkvQZ86cidLSUvnr0KFDwZymXwY5A84AnIiIqK1jJ3QiIgolzd4FfenSpXjmmWfwxhtvYMOGDfjmm2/w888/48knn9Tcx2w2IzY2VvHVVEyGugDcwRJ0IiKitk7uhM4AnIiIQoAxmI0TExNhMBhQUFCguL2goACpqamq+zzyyCO4/vrrcfPNNwMA+vfvj8rKStxyyy146KGHoNe37CQ0Y93j2ZkBJyIiavOkRmxVNq4BJyKi1hdU9BsREYGhQ4di0aJF8m1OpxOLFi3CqFGjVPepqqryCbINBvebYWvM5GQGnIiIKHxIJeh5xVWtfCZERERBZsABYMaMGbjhhhswbNgwDB8+HK+++ioqKysxZcoUAMDkyZPRsWNHzJ49GwBw8cUX4+WXX8bgwYMxYsQI7NmzB4888gguvvhiORBvSVwDTkREFD6kJmyPfr8NY3slIyMhqpXPiIiIwlnQAfiVV16J48eP49FHH0V+fj4GDRqE+fPny43Z8vLyFBnvhx9+GDqdDg8//DCOHDmCpKQkXHzxxXj66aeb7lkEwcQu6ERERGHjwIlK+fvNh0sYgBMRUasKOgAHgOnTp2P69Omq9y1dulT5AEYjZs2ahVmzZjXkoZqc0cA54EREROFCuvAOAHqdrhXPhIiIqAW6oIcauQmbw9Uqa9CJiIio5Tw/aYD8fY2dndCJiKh1hWEA7rn6zWXgREREbduwzASM6+NeJlfNAJyIiFpZ+AXgBk8AbmcndCIiojZPasRWzVngRETUysIuABfXgrETOhERUdtnMboDcGstL7wTEVHrCrsAXCxB5yxwIiKito8ZcCIiChVhF4AbxACcGXAiIqI2z2KqC8C5BpyIiFpZ2AXgOp1OzoJzFjgREVHbF8kAnIiIQkTYBeCApxEbm7ARERG1fRaT++MOx5AREVFrC8sA3FQ3C5wl6ERERG2ftAacATgREbW2sAzADXUZcIeTGXAiIqK2Tl4DziZsRETUysIyADfWZcDtXANORETU5nENOBERhYqwDMBNBjZhIyIiUvP0009j9OjRiIqKQnx8fED7uFwuPProo0hLS0NkZCSys7Oxe/fu5j3RIEgZ8Bo7K9+IiKh1hWUALjdhYwk6ERGRgs1mwxVXXIFp06YFvM/zzz+Pf//735g7dy5Wr16Ndu3aYfz48aipqWnGMw1cpIlrwImIKDQYW/sEWoNUgu5gEzYiIiKFxx9/HADwwQcfBLS9y+XCq6++iocffhiXXnopAOCjjz5CSkoKvvvuO1x11VXNdaoBi4xwv++zBJ2IiFpbeGbA9RxDRkRE1BT279+P/Px8ZGdny7fFxcVhxIgRyMnJ0dzParWirKxM8dVcLMyAExFRiAjPANxQN4aMa8CJiIgaJT8/HwCQkpKiuD0lJUW+T83s2bMRFxcnf2VkZDTbObILOhERhYqwDMDlJmxcA05ERGHggQcegE6n8/u1c+fOFj2nmTNnorS0VP46dOhQsz1WJJuwERFRiAjLNeAGPbugExFR+Ljnnntw4403+t2mW7duDTp2amoqAKCgoABpaWny7QUFBRg0aJDmfmazGWazuUGPGSwpALc5nHA4XfLnACIiopYWlgG4qa4JWy2bsBERURhISkpCUlJSsxy7a9euSE1NxaJFi+SAu6ysDKtXrw6qk3pziowwyN+fqLQiOcbSimdDREThLCxL0OUxZGzCRkREpJCXl4dNmzYhLy8PDocDmzZtwqZNm1BRUSFvk5WVhW+//RYAoNPpcNddd+Gpp57CDz/8gC1btmDy5MlIT0/HxIkTW+lZKJmNemSlxgAA/rUwdOaTExFR+AnLDDibsBEREal79NFH8eGHH8o/Dx48GACwZMkSjBkzBgCQm5uL0tJSeZv77rsPlZWVuOWWW1BSUoIzzzwT8+fPh8USGplmnU6H+ydkYcoHa7FkZ2Frnw4REYWx8AzA69Z+cQ44ERGR0gcffFDvDHCXS/n+qdPp8MQTT+CJJ55oxjNrnM4dogAA5dbaVj4TIiIKZ+FZgi7NAWcXdCIiorAQY3bnHCqttT4XEIiIiFpKWAbgJpagExERhZV2dQG40wVU2zkPnIiIWkdYBuBswkZERBReoiIM0NVNH6uoYRk6ERG1jrAMwA1cA05ERBRWdDodoiPcWfAKrgMnIqJWEpYBOOeAExERhZ9oCwNwIiJqXWEZgLMEnYiIKPxEmxmAExFR6wrLAJxN2IiIiMKP1IiNa8CJiKi1hGUALo0hYwk6ERFR+IipK0GvtDEAJyKi1hGWAbihrgS9liXoREREYaNdBDPgRETUusIyAGcTNiIiovDjacLGOeBERNQ6wjIAl5qw2ZgBJyIiChueJmz2Vj4TIiIKV2EZgHuasDEAJyIiChfRbMJGREStLCwD8Ah2QSciIgo7LEEnIqLWFpYBOEvQiYiIwo/UBb20miXoRETUOsIyAJdK0O0MwImIiMJGYrQZAFBUYW3lMyEionAVlgE4S9CJiIjCT1KMOwA/Xs4AnIiIWkdYBuAsQSciIgo/yUIA7nK5L8LvKazAYz9sQ0FZTWueGhERhQlja59Aa2AJOhERUfiRStBtDifKqmsRF2XCpDdXorTajh3HyvD5raNa+QyJiKitC8sMuCcAZwk6ERFRuLCYDIiLNAEACsvdGW+pIdvGvJLWOi0iIgojYRqAu0vQOQeciIgovEjrwPOKqzBxzgr5dqeLF+WJiKj5hWkA7n7aNmbAiYiIwkpSXRn6nCV7sOlQiXw7A3AiImoJDQrA58yZg8zMTFgsFowYMQJr1qzxu31JSQnuuOMOpKWlwWw247TTTsO8efMadMJNgWvAiYiIwlNyrDsA33q0THG7k/E3ERG1gKCbsH3++eeYMWMG5s6dixEjRuDVV1/F+PHjkZubi+TkZJ/tbTYbzj//fCQnJ+Orr75Cx44dcfDgQcTHxzfF+TdIhJEl6EREROFIyoDbavkZgIiIWl7QAfjLL7+MqVOnYsqUKQCAuXPn4ueff8Z7772HBx54wGf79957D8XFxVi5ciVMJnfjk8zMzMaddSMZ9WzCRkREFI6kNeD+rD9YjN93FWH6uT3kqjkiIqKmENS7is1mw/r165Gdne05gF6P7Oxs5OTkqO7zww8/YNSoUbjjjjuQkpKCfv364ZlnnoHD4dB8HKvVirKyMsVXU/KsAefVbyIionAilaD7M+nNHPxr0W58supgC5wRERGFk6AC8KKiIjgcDqSkpChuT0lJQX5+vuo++/btw1dffQWHw4F58+bhkUcewUsvvYSnnnpK83Fmz56NuLg4+SsjIyOY06yXVILONeBEREThJSnaEvC2+4oqm/FMiIgoHDV7XZXT6URycjLeeustDB06FFdeeSUeeughzJ07V3OfmTNnorS0VP46dOhQk56TVIJeyxJ0IiKisBJIBlyi1+ma8UyIiCgcBbUGPDExEQaDAQUFBYrbCwoKkJqaqrpPWloaTCYTDAaDfFvv3r2Rn58Pm82GiIgIn33MZjPM5sDfIINlMrIEnYiIKBxJTdgCYdAzACcioqYVVAY8IiICQ4cOxaJFi+TbnE4nFi1ahFGjRqnuc8YZZ2DPnj1wOj3B7q5du5CWlqYafLcEk4El6EREROEoPsqked8vW44pfmYATkRETS3oEvQZM2bg7bffxocffogdO3Zg2rRpqKyslLuiT548GTNnzpS3nzZtGoqLi3HnnXdi165d+Pnnn/HMM8/gjjvuaLpnESRTXQm6ywU4OPiTiIgobOj8lJVP+2QDjpVWyz+zBJ2IiJpa0GPIrrzyShw/fhyPPvoo8vPzMWjQIMyfP19uzJaXlwe93hPXZ2Rk4Ndff8Xdd9+NAQMGoGPHjrjzzjtx//33N92zCJJUgg64s+AGvcHP1kRERNSWXNQ/DT97ZbslR056AnBOICMioqYWdAAOANOnT8f06dNV71u6dKnPbaNGjcKqVasa8lDNQipBB9zrwC0mBuBERETh4sUrBuLhv/TGVW+twsETVYr7CsutrXRWREQUDhoUgJ/qTEKG3l7LdeBEREThJDLCgMiISNUS86Mlngy4jZ8RiIioiYVlcZVer5Mbq9RyDTgREVFYUlvhfay0Rv7eKgTgtlonqmy1LXBWRETUloVlAA54ytB5dZuIiMjj6aefxujRoxEVFYX4+PiA9rnxxhuh0+kUXxMmTGjeE20KKhG42ITNavd8Rhj/6u/o/9hvqLQyCCciooYL3wC8rgydo8iIiIg8bDYbrrjiCkybNi2o/SZMmIBjx47JX//73/+a6QybjloG/GiJmAF3AABcLhf2F1XC4XRhy5HSFjo7IiJqi8JyDThQ1wndyhJ0IiIi0eOPPw4A+OCDD4Laz2w2IzU1tRnOqGUpMuB1VXJiKXq1zdHi50RERG1H+GbAWYJORETUZJYuXYrk5GT06tUL06ZNw4kTJ/xub7VaUVZWpvhqaWozwQvKPF3Q1QLwKgbgRETUCGEbgBtZgk5ERNQkJkyYgI8++giLFi3Cc889h2XLluGCCy6Aw6EdrM6ePRtxcXHyV0ZGRguesZtaCbpIKkGX/guAa8CJiKhRwjYAjzBKAThL0ImIqG174IEHfJqkeX/t3Lmzwce/6qqrcMkll6B///6YOHEifvrpJ6xduxZLly7V3GfmzJkoLS2Vvw4dOtTgx28olQS4woo9J7DuQLGiGVtJta2Zz4qIiNqy8F0DXleCXssMOBERtXH33HMPbrzxRr/bdOvWrcker1u3bkhMTMSePXtw3nnnqW5jNpthNpub7DGby+Vzc7Dg7rPln09W2VvxbIiI6FQXxgG4OwNuYwBORERtXFJSEpKSklrs8Q4fPowTJ04gLS2txR6zIXRCEfpXt43C5XNzVLc7eKJK/v7NpXvRMT4S143sEvTjVdscMBp08mcQIiIKP2H7DmA0sASdiIjIW15eHjZt2oS8vDw4HA5s2rQJmzZtQkVFhbxNVlYWvv32WwBARUUF7r33XqxatQoHDhzAokWLcOmll6JHjx4YP358az2NoHVLita8b0PeScXPD3+3NejjV1prMeDxX3HBv/4Iel8iImo7wjYDHsESdCIiIh+PPvooPvzwQ/nnwYMHAwCWLFmCMWPGAAByc3NRWuqeh20wGPDnn3/iww8/RElJCdLT0zFu3Dg8+eSTIV9iLq4Bj7VofyTyDsAbYtOhEtgdLuwprKh/YyIiarPCNgBnCToREZGvDz74oN4Z4C6Xp3osMjISv/76azOfVfMzGvSIsRhRXuPb5fzPw6WNPn6t0/OaOZ0u6PX19WAnIqK2iCXoLEEnIiIKS95zwOOjTKrbec/+TokNPrMvVtzx4j8RUfgK2wA8QsqA1/JNkIiIKBw9/dd+MOh1uHd8LwBAfGREQPvVNuDivZgBF8eaBWtJbiEOFVfVvyEREYWksC1BN5vcAbi11lHPlkRERNQWDencHjuemIAIo/szQWyk/49FvVJikFtQ7pMRD4RVuODv/uyhnm3354u1h3Df139iUEY8vrvjjKD3JyKi1he2GXCL0QBA+YZIRERE4UUKvgHlWDI17du5g+ZquwNfrz+MN5bugdMZWDa82uZZW97Qzx5P/rQdgLuhGxERnZrCNgCXMuA1dmbAiYiICKh1+g+ME9p5StTv+XIznp+fiwU7CgI6dqXV83mjIQH4yUobyq2eID7Qzy/bj5Zh7ItL8dOfR4N+TCIianrhG4AbpRJ0ZsCJiIgIcAjZ7NMz26NzQhQGZcTLt8VFmuDVtw3v/rEfv2w5hqkfrUNplV3z2FVCBjz75WVYsadIc9tfthzDFXNX4khJtXzbiUqrYpuCshrN/b/fdARnP78E24+W4e7PN2F/USWmf7pRc3siImo5YRuAW0zuEnRmwImIiAhQNkr7/JZRWHzPOcjsECXfZjEZEFX3+UGy9Wgppn2yAQu2F+DVRbs0j13ptW782ndWa2477ZMNWHvgJB77YZt8W3GlMrg/WqIdgM/bcgx5xVVYubcINex1Q0QUUsI2AGcGnIiIiETTx/YAAEwclA69XgejQY/UuEj5frPRgMgIZaM2sSHb4ZPVivtW7inC9qNl7u2svvPFy2q0M+YAUFThyXqfrLIp7jtWWu29uUyaZW5zOGHwTtkTEVGrCtsAXMqAN2YUCBEREbUd5/VOwR/3jcVLfxsk35YWZ5G/t5j0aGc2qOzpJs763l1QjmveWY0L//0HAN8MOAAMe2qh31JyACiutMFW68TJSu8AXHs/KQC317pg0DMAJyIKJWEbgEsZcJZmERERkSQjIUoRtIoBuNlokD8/qBFL2JfmHpe/r7E7FGvAJbZaJ/6bc1DzeHknqnD60wsx9aN1KA4iA15hlTLgDgbgREQhJmzngDMDTkRERPVJU5Sg6xUl5wntIlAsZKZtwrK2Hfll8vdFFVZFF3TRuoPFmo99ou7Yy3YdR0m1u1zdYtKjxu7E8XKr5n7ldaXtdgcz4EREoSbsM+BWZsCJiIhIQ6qiBN0gl3cDQHykSbFtSV0XdIfThVV7T8i3F1XYVDPgALAhrySg89hcN/v7tJQYAPAbgJdJa8BrnTAKAbjL5cIHK/ZjvZ+gn4iImlcYB+DMgBMREZF/HdpFIMLg/rhkNurl7DIAxFiUhYRS07QF2/NxVFijXVSunQG31TphdwT+WaRncl0AXqEegFtrHXIm3uZwQi8E4Au2F+CxH7dj0ps5AT8eERE1rbANwC0mZsCJiIjIP71eh5Q4MwB3BlxY5o0YizIDXlxlg93hxEde67qLKqyaGXDAkzkHoBqMxwqB/mkp0e5jltvgcrl8thUz9N4Z8J355ZrnQERELSNsA3ApA17DDDgRERH50TctDgCQkRCpuD3arMyAu1zAvuOVWHvAXeI9PDMBQN0acJUu6JISocFalcp22b1T5O/T4t3nUG13qB6zQgjA7Q6nYg14MJl2IiJqHmEbgDMDTkRERIF48W8D8etdZ2NAp3j866pBiDDo8Z/rh/qUoAPAzG/+hN3hQkZCJIZmtgfgXgNe7S8Ar2uwVlZj9xk3BgBp8RZMHJSOtDgLzjktCVER7iRCkco68HKvANyo93zUswkB+KVzVmBXATPiREQtLWy7oMtrwGt5NZiIiIi0RZuN6JXqXnt96aCOuLB/GkwGPVbv8zQzi48yoaTKLjdVO6tnEhKj3aXrxyusqLZrB+B7CivQNz0Wg59YAIfTt6w8KsKIV68aDKfTBb1eh6QYMw6eqMLxCisyE9spthXXqNtqlWvA7bWeY28+VILbPl6PxfeMQX5pDZJjzIptiYioeYR9BrzGzxsiERERkTdTXVM2MQN+x5geivXWp2e2R0qsOwDfePCkamAtmfnNFsz6fpvmNlKpuxQgy4G9Sga8TFwD7nDBIMTU3iXo+45XYuH2AoycvQgzv9mieX5ERNR0wjYAZwaciIiIGkNcX31+nxT0rBsRBgADO8Xj7NOSkBgdoeiIruXL9Yc175NKziUd2kUA8MwJFykz4A4YhBL0CqtvI7h/L94NAPh83SG4XC7Vxm5ERNR0wjcAFzLgfLMhIiKiYFUKnc27dIhCjNCULbNDO8RaTLhiWEajH8e72VtkhDRKVVnFd6CoEtuPlck/2x0uRVa+SGV0WZwwy3zye2vw1zdW+s3WExFR44TtGnBLXQbc6QJqnS6YDFz3RERERIG7bkQXLMs9jmtHdoFOp8MNozOx5kAxTs9sL5eLx3qNKmuIKK8AXJpLLlbxnaiwYsyLSxXb2WqVXdDVStbjoyLk7//YXQQAyCuuQlevteVERNQ0wjYAlzLggHuUh7Sei4iIiCgQGQlRmH/X2fLPFw1IQ0K7kXLDNgBoZzao7RqUaK9jSJ9hbEIAvmB7gc9+docTLniy2WoZ8AiVzz/OACsDax1OGPn5iYgoKGH7V9Ns9Dz1SW+sbMUzISIiorZiVPcOSGjnySpHmhofgEdFeGfAffvYLNzhG4DbHE7UOsQA3HfNeGG57/p0fyPTJM/M24HBTy7AoeKqerclIiKPsA3AdTpPSdbuwgo4ud6JiIiImlg7s3axYZcOUYEdwysAV8uA7zjmO9PbVuusN5utFkBXqjRrkxRVWFFjd+Ct3/ehvKYWbyzd4/f4RESkFLYBuDebg93QiYiIqGlFRmhnwJNjzFjyzzH1HsO7jF0qG7c5PJlqtbGqdocTtfUkGNQ6qVdpZMDzS2sw7KmFOFdYa67XsYcOEVEwGIDXsdoZgBMREVHTErPXgzLi8fLfBso/66Dz6XAuSY21eI5hVs+AL9hegJy9JwC4+9l4s9U66+1oXl7jm+0Wu7uLft91HAAUY9UYgBMRBSesA/A3rh0if2+trX+9ExEREVEwxBne7cwGXDakk+dOHRBjUQ/AP755OACgfZRJ0bcG8GTAC8qsuPrtVbDWOlQDcLvD1aCRYlVW9c9EauXsYpd1IiKqX9h2QQeAC/unISrCgCqbAzXMgBMREVETEwNw74ZsOribwhr1OrlUfETXBDzylz7okRyDX+86G2ajXtG3BgDMXsc5WlIDtaXettr6S9DVaGXA1Q7FBDgRUXDCOgAH3G98VTYHM+BERETU5MTyce/AWadzN4WNsRhxssoOAJhx/mno1zEOABTjzERmr9FfB09Uqm5nc9Rfgq5Gaw24Qy0DzgiciCgoYV2CDgBmo+8oDyIiIqKmIGbAvddL6+D+WcyMiyPMtEhrwCV5fkaBNSTBUKHRBd3FEvRW8f2mI1i+u6i1T4OImggz4HVvYsyAExERUVMTZ3h7r6GW4nGxqVm3pOh6jxnhkwHXDsADmentrUojAFfLpnuXx1PTOlBUiTs/2+T+/tmLWvdkiKhJNCgDPmfOHGRmZsJisWDEiBFYs2ZNQPt99tln0Ol0mDhxYkMetllIjU3YBZ2IiIiampgh9s4gD+gUr/hZrwsso+ydAX93+X7NbRvS46ZSqwRdJQCv9TPG9d3l+/HYD9tUM+cUmPyymvo3IqJTStAB+Oeff44ZM2Zg1qxZ2LBhAwYOHIjx48ejsLDQ734HDhzAP//5T5x11lkNPtnmwBJ0IiIiagnOuo8a8/7vLNyV3RN3ntcTADC6ewcAwD3jegV0nAiD9mxxiZSY9u6OPqBTHNpHmdAjWTvTXqXShG3B9gI89fMOn9ttfgLwJ3/ajg9WHsCmQyX1nm8483eBQqyacDZgPT8RhZ6gA/CXX34ZU6dOxZQpU9CnTx/MnTsXUVFReO+99zT3cTgcuPbaa/H444+jW7dujTrhpmZhCToRERG1ACmY6pMei7uyT0Nk3frwf101GHOuGYJp53QP6DjeGXA1Upm6dwn6mT0SseGR8zHljEzNfStVxpBN/Wid6rZaFYQ1QuBfpjJrPBDHSqux5XBpg/atz57CCjz103aU1jW/ay01dgfGvfI77vh0g/oGQsxtdzJZRNQWBBWA22w2rF+/HtnZ2Z4D6PXIzs5GTk6O5n5PPPEEkpOTcdNNNwX0OFarFWVlZYqv5sIMOBERkduBAwdw0003oWvXroiMjET37t0xa9Ys2Gw2v/vV1NTgjjvuQIcOHRAdHY1JkyahoKCghc761KE2RxsAkmLMuGhAGvQBNjTzXgMu6dcxFudmJeOZv/b3BOBeGfDYSBN0Op2iOZw3MQNeXmP3W2aulQEvF4Juu5/PWHknqnC83Kp636jZi3Hx68uxp7Bcc/+GcLlcyH55Gd5Zvh8f5Rxo0mMHa/HOQuwurMDPfx5TvV9Metc6mAEnaguCCsCLiorgcDiQkpKiuD0lJQX5+fmq+yxfvhzvvvsu3n777YAfZ/bs2YiLi5O/MjIygjnNoEhrwGvszIATEVF427lzJ5xOJ/7zn/9g27ZteOWVVzB37lw8+OCDfve7++678eOPP+LLL7/EsmXLcPToUVx22WUtdNanjqaqINbKgLePisB7N56Oa0Z0RoRRfZtYiwkAEGnS7sNbUZcBL6qwYuDjv+Hqt1dpbqtVQVhWY1f9XlRcacPZLyzBmBeW+C3DbuoO4Kv3F8vfV2jMPG8pJyrULz5IxIs2DMCJ2oZmHUNWXl6O66+/Hm+//TYSExMD3m/mzJkoLS2Vvw4dOtRs5+jpgs4MOBERhbcJEybg/fffx7hx49CtWzdccskl+Oc//4lvvvlGc5/S0lK8++67ePnll3Huuedi6NCheP/997Fy5UqsWqUduIWjrontmuQ4YgZ8aJf28vfiODOTRpZcSjxEemXA371hGMb2SgIAVNZ1QV+wvQBOF7D2wEnNc7FpfH4SM+AlGmXe2466y8srbQ6/zcZOVPqvwAiWuCY9xty6A4HE56Z2EUKcve5vvT0RnTqC+quTmJgIg8HgU1ZWUFCA1NRUn+337t2LAwcO4OKLL5Zvc9atXzEajcjNzUX37r7rncxmM8xmczCn1mByCTq7oBMREfkoLS1FQkKC5v3r16+H3W5XLE/LyspC586dkZOTg5EjR6ruZ7VaYbV6sn/NudystX12y0j8uPko7sru2STHMwuBdsf4SKw/6A6Qxay3VgZc6mTuXYJ+Ro9EdGofhSW5x1Fel7E2BlASr5XAKBey3gdOVOK/OQdw8cB0xEd55pznC+PXth8tQ1pcpPyzGIwW1ZMlDpa4Lr62lRubFQsBuMPpgtGgfM3FCxy1IbYGvLTajhV7inBuVjIspvobAxKRW1AZ8IiICAwdOhSLFi2Sb3M6nVi0aBFGjRrls31WVha2bNmCTZs2yV+XXHIJxo4di02bNjVraXmg5DFkbMJGRESksGfPHrz22mu49dZbNbfJz89HREQE4uPjFbf7W54GtOxys9Y2slsHPP3X/oipK/9uLDEDnhZnkb8XgzWzVwA+cVA6Ts9sjwsHpAFQZsulY8ZFus+vrKYWLpdLc826SCsAL6v2ZMA/yjmIR77fhrs/36TY5lCxZ3759qNlqLE7cN5LS3H9u6sV2d6iisZnwHfml+HJn7ajuNKmWHbY2mXdYgBuVzkXRQAeYiXoUz9ch9s/2YBnf9nZ2qdCdEoJugR9xowZePvtt/Hhhx9ix44dmDZtGiorKzFlyhQAwOTJkzFz5kwAgMViQb9+/RRf8fHxiImJQb9+/RAREeHvoVqEJwAPrauKRERETeWBBx6ATqfz+7Vzp/JD9JEjRzBhwgRcccUVmDp1apOfU0suN2trxDXgYqAtNlzzznDfMbYHvrxtNKLrSq7F+yOMeuj1OjkAdzhd2JB3UrN0XKRdgu6775Lc44qfD4oB+LEyrD1QjL3HK/HH7iJFdry+ddKBmPDqH3h3+X688Guu4nVq7Qz4ySohAFfJcIuvrz3EStDXHHCvpf96w2HV+5fvLsIF//oDmzmGjkgh6IUvV155JY4fP45HH30U+fn5GDRoEObPny83ZsvLy4Ne36xLy5uUVMbFAJyIiNqqe+65BzfeeKPfbcQxoUePHsXYsWMxevRovPXWW373S01Nhc1mQ0lJiSILrrU8TdKSy83aGjEDLnZOF5fTea/x9u6wHhXh+QgoBfEWkx4RRj1stU5MejNHDtb90cyAazReE+UJAfjBE1XYd7xS/vn6d9fI32/IK8HIZxbhiUv7Ylxf7d+pQOwpLEdmB89afH8d3lvCCSG7r9YtXqwEUMuQN8aC7QV4ffFuvHzlIHRP0p4LXx+thQo3fbgW1lonrpibg11PX9Dg4xO1NQ3qPDF9+nRMnz5d9b6lS5f63feDDz5oyEM2G4uUAWcXdCIiaqOSkpKQlJQU0LZHjhzB2LFj5WZq9V1UHzp0KEwmExYtWoRJkyYBAHJzc5GXl6e6PI0aT8x6i+u0lRlw5Uc87/XcYoAuBdE6nTsLLo0Fq7DW3yH8aEk1rvxPDq4d2QXHy63IL63GAxf0VjRh03KouFr+Pr+sBjuOefoAiMG5dP8t/12PA89eVO9xvTmFLHdyrMVvBry8xo5L56zAub2S8fBf+gT9WMEqFEawqWXjmzMD/t2mI9h8uBRLdhY2KgDXIv1esXkckVLrtn4MAcyAExERuR05cgRjxoxBly5d8OKLL+L4cU/JsJTNPnLkCM477zx89NFHGD58OOLi4nDTTTdhxowZSEhIQGxsLP7xj39g1KhRmg3YqHF0Ok8wLWa2LUJpuncG3OAVgLcT7m8f5VmbLgbggSittmP1/mLFaK8RXTugrLr+DHhptSf7W1xpU3QnbyonKqwY+tRC+eeEqAgcK/UE/mJjM5fLhU9W52Hf8UrsO76/RQLwSuEih1o5v7IJW9NmwKXsv9iUriG05tdndojCgRNVqvcRhTMG4JwDTkREBABYsGAB9uzZgz179qBTp06K+6Su1Ha7Hbm5uaiq8nywfuWVV6DX6zFp0iRYrVaMHz8eb7zxRouee7gy6HT411WD8O9Fu/H0X/vLt0eZ/AfgRoMe7994Ot5YugdjeiXLt0vrwBvjf2vy8Mce/7O7rbUOn5LqnfnlfvfR1d+U3ceKvSd8HrdaownbvV/9ia/Wq69nbg4ul0uRHVbNgIv3N3EmWTpcVQCfgR1OF1bvP4Hlu4uweGchPr/FU92i9c+SkeAJwEur7U3yu0XUFjAAZxM2IiIiAMCNN95Y71rxzMxMn3nFFosFc+bMwZw5c5rx7EiNQa/DpYM64tJBHRW3ezdh8w7AAWBsVjLGZiUrbou1NP6j4aKdhfVuUyGUqHeMj8SREk9WukO7CNXZ3/ENCOC8g9Yqm0NzDFlLBt/SY4v/K6mVmIufT5u6lNvhDCwD7nS68O7yfXhmnqdR47sr9svf6zSujIijyfYUVihm1hOFs1OnW1ozkeeAMwAnIiKiU4z3uDFJlFcDNUOA6WOtKufhmdqz4Bui0uoO+qIiDOgY75n/nRprwaxL+qruI84QV+NyuXwuDpV6lcJX2xyotjdfVjkY3iXn9Zage1UMNLY7vHQ4f1Wgs77fiuHPLMTri/cobhf30frNsitGyTXtLHeiUxkDcBPngBMREdGp5dZzuqF3WiwuG9JJ9X7vEnRjgBNq1D4PfXbLSDx/+YCgzzHWYtS8QFBudQfG7cxGpAizzDMSIn3OXeKd1ZeUVtnx/Pyd+OsbKzH62cWKDuzSPPKYugsSVTaHcg543RUHRyuMI/MOuOtrwiauV/96/WEMfWoh5izZ47NPoKQMeJWfDPiHOQdRVGFDmVdTPbGxnda1HfGCgda4OqJwxABc7oLOPwxERER0aph5QW/8cudZaKcxKsx3DFlgx61R+TzUPSkaMfWUpk8f2wM//eNMRcA9+7IBSIrxjJoTq+ClDHi02Yh0IQDv1D5KM9CWqhUPn6zCPV9slrumv7QgF28s3YtNh0pwrLQG2496uqlLGfC0ePdjVNlqlSXodUFiIE3jmpp3SblaCbrN4RDu9wS09339JwDghV9zG/z40kWH6gb0QXIoKg3UI3Dx+bHSlMgj7APwDtHuN4btx8qQX1rTymdDRERE1Hi+Y8gC+8gnBsySGItRM9CXpMZZ0K9jnKLRVlykSRGQi+vQpe7f0WajTxM48eKBOPNcCpxv/2QDvt5wGH+bmwOXy4Uv1ynXbr+/Yj8213VUlwLwlFgpAPdqwlaXBfYuVQfgU87e1LyzwqoBuMYYMvEixboDxWgIOQBvQBd08aXRyoCL58sMOJFH2AfgQzu3x5DO8aiyOfD+yv3170BEREQU4gJpwqbmUa/RWxEGPSwmg2YpuaSd2f143gG4yaBVgl4r7zeym2d9ea/UGMXFg9E9OuD1awYD8Kw7/vNwqXyMHcfKfTK4v24rwKVzVgAQMuBxWgG4S7GdqLFl6dZaB/L8jOHyzgp7d4UHtNeAtxNeo8vn5mDv8Yqgz89fBtzhdCnKzLX2BZSVDSJlAM6lnkSSsA/A9XodLuiXBgAoYAaciIiI2oD65oBryUiIwtfTPCOmpNJznU6H3+8dq9nJWgqa/QXgdodLbnrmyYCboNPpsHDGObhvQi9cPrST4uKB2ajHgI7xANQDxf1FlQCAoV3aY0CnOJ/7pdLy1Dh3o7cKa61qUKsWgDd27vZNH6zD2S8swep9J1Tv91kDrlqCrpEBNyv/ffcWNjwA914DXlxpw4hnFmLGF5u09xVS4DqNEnTFGvBWbHZXYa3F4ZOcR97cXC4X3vp9r+bvO3mEfQAOANF1by4V1tp6tiQiIiIKfd4Z8ADjbwDK8VHi2u/OHaLQJy1WdR8pIysG/nGRJhgNygeWgmhpDFl0XSDZIzkat4/pAZNBrziGyaCHJUIv7+tdFl5c6e6u3aFdhE+23el0yQ3ZpHXm3oG2VIJeohKAq5WEB2N53Sz0j3IOqt7vHZS+v+IAJrz6u2Ikm7IJm3oGHEC9SwTUSEG0dxf0z9bmoajChu82HdXcN5DyfFuIlKCPmr0IZz63xG81AjXer9vy8cy8nbjyrVWtfSohjwE43OuPAKC8hgE4ERERnfrEANyg12nOalYTqQjAlbO3XfAEXhkJnvFh7cy+jdNiLEafoLja7sDhk1V4et6Ouv18A0fx3F0uz/m4XL5l28WV7sC5Q3QETF7B/sDHf8PO/HIA7jXqavxlwNVKwhui0qb++dI7KF2+pwg788vx8aqDKK+x46v1h3G8wjMPXbwg4F3h4G+UmBbpuXuvAdfKaIuCL0FvvQBc+nwvXRCh5rG/iBc4AhX85bI2iBlwIiIiakvEddSBlp9LxODOu/u5vdYTeGV2aIdDxe5srVogrdfrFE3UAKDG5sQj32+Vf45W6a5uMXoe3+F0KTLy3oGmlAFPaBeBwyerFfeVC5/rNANwp3YX9KaaEa415ksrKI2LNOH+r//EvC35itvFCwLeGeiGdDJ3uqQSdOXn30B+XWoVY8jUdxB/V6wtXIJurXXghfm5ODfL0+BPHONG1JqYAYdnNiQDcCIiImoLFBnwILLfgDIDHuk1k1vMaqbHeTLgWqPDuie1U/xcZa/F5sMl8s/REeqBu8ThcsFk0MvZbe9g9kSlO0PcPirCJ9gXJcdYVLt1yyXoVTaf++wNWAO+41iZT1dyrS7j4ogxkVGv8wm+AeUFAe+AuyGdzKUg2nv0nD6A35dAxveKAW9LZ8A/WHEA7yzfj2veWS3f5l3R4HK5sKugvFVmwFN4YwAOIQPOEnQiIiJqAyK9StCDIWacvddwi5nMhOgI+ftojTXIM8b1wsRB6fLP1TYHuidFyz/XF/pInbilczpRoQyUpZ/dJejaH2tjLUbVwFIqwy6panwGvMbuwAX/+gOXz83B8XKrfLt3hlmiFZRqBdNi1tl7G7US9HlbjuHi15bjQF2jOm/Sa2tzOBXPNZDrNdLaen/bi89PWjpQXrdfjd3ht8t6Y+077vucHV4Z8PdWHMC4V37Ho0JFBjVckNf5whoDcAhrwJkBJyIiojZADIiDXR8sjhwzegW1YlAlPoZU8j64s7JLelykCa9eNRg9k91Bd7XdochUF1f6Zp5FUqMwKRMvNigTf05oZ4ZJY1SayaCD0aBXzXRKQa13+ToQ/BrwHKH787FSz/EqrQ4cKq7CM/N2KG73Xs8uqdL49xJfe++stVoJ+u2fbMCWI6W4W6ObuSKgF/YP5IJNWQBJK/H1s9U68e7y/ej/2G/4cOUBjH52Ma5/b7WfvRvHodIkzvvf87n5OwEAn6zOa7bzIP++23gEmw+VtPZptDgG4ABizO4GI7ZaJ6ycU0hERESnOHENeLDjtMQ1vSavYEwsQW8nZNkj6oLf28d0x93Zp2He/53ldT7ubWvsDkX29LqRXfyei3TqUkZfDGABIK/Y3fgpIcq3CZtEXFMuefDCLACeLPd+lSyx9FyrbYFlaxfvKJS/FzPqJyqtuOqtVXjr932476s/5duDz4D7K0HXztbvLlAfUebUCMADKUEvF9bMa5Vwezdhe/Kn7QCAWT9sQ3GlDSv2nFAt/W8KTpUAvNYrAG9Il/vSKjt+2XKsSeKFA0WVOPelpfhi7aFGH+tUtO5AMe76fBMunbOitU+lxTEAh7IBSKWVATgRERGd+oKsPFflLwPeIdrss73FZMCd2T3RJ105rkwKoEur7XLH8a+njUaP5GifY4ikIFHKgKuVFgPucnitNeDmun3fvHYIppyRiZ1PTsDwrh0AuC9OVFprkV9W47NfrcOFExVWDH9mIW7+aJ3qsR1OF574cTvu+HQDPl3jyaSerBK7l7vkTP0mIdunlWHXCsDnLNmLgyfcz1+qahjXJ8W9j58qB60eR1ol7YH83ogZcLXn4XK5FMfXutiwUXg9Sqvs+HxtnmpH+qCpvLTeJegBTFLz8fcP12LaJxvwyoLdDTwxj8d+3IZ9xytx39d/1r9xG7S7AbPr2woG4HCX2khXZrkOnIiIiNqCNKFJWkN5Z5UjhDLv8X1TcfZpSfjHuT3qPY4UaO84Vi53HI+LNPnbBYAnuyoF8PO3+TYnA6QMuPrH2si6OeIX9E/DrIv7wmIywFgXZdY6XDhwQj2otzud2JhXgvKaWizeWYgTFVafbVbvP4H3VuzHz38eU2SC1daUA0Ca0I3dppFF9RdMn/PCUvy2LV/eJqGdex1+Q8aQiVli6XhLcwvx/PzcevcVqxi8M8lfrDuEucv2KW7znnku2XjwpPz99P9twP1fb8E/v9zs97HtDme9jZNVS9CbYM35+rrz/WJd47PWgTSya8vCeck4A/A6nnXgTXDVjYiIiKiVpWmM3gqGUa/8qDjr4r7oltgOz08agAijHh/9fTjuGder3uMM6BQPANiYd1LuueMvAD+vbnzUlDMyAXgy4GJzM0mXDlGIjDBoBuBqJehSc7lap0u1/BxwB+fieugVe0/4bLNBCCBFJzVKq1OFiyJaQanW2DLJLf9dL2dv29cF4GpZc4vJ83p4jy0DlBlw6TFvfH9tQD2RxIy22MDN4XThvq/+lNdXq20v2na0TP7+j93uOd0Lthf4fey//Hs5+s36FSf99A9Qi7WbaqwcANiboKu7d4PDU119z8blcuH9Ffuxqq5XQjg3bWMAXoed0ImIiKgtSYtveAZcmv99Xu9kxe1dE9th8T/H4G+nZwR1vIF1AfjaAyfl4DE2Ur1zOgDMvX4olt07BuP6pgJQrmmPNBkwsFOc/PPYXu5zNBnVP9FHqoxIkzPgTifyS93l596l196Z1hV1AaJoQ16J6mNqZcDbR3kuOmgFpQt3+A9A1Y4nZbC3HinFz38eAwB0aOdZInBS5XwcQul4TQPGmEnEEvTKIDu+a23vT25BOQBl0ztvamvA3/5jP174dafK1sELdq65w+nyqRQIdjrBqUTtgs/vu4vw+I/bcdVbqwLavi1jAF6Hs8CJiIioLema2K7+jTQsvmcMPp06AmN6Jde/cQB6JEcrZopbTHqYVTLTEpNBjy4dPOffOy1G/r5/xzjF+vNz67LlWmvAVTPgdZn9WodL7v8jlXNLDp+sUowQO+rVAM7lcmFjXnAZ8FpH/euiA2Uy6BBtVgbgf3ltOe74dAPWH1TOIj9a4tvlXSzTri/r7o/N4ZQDqEqNz9FaAWtjXgN/87u1Aro5S/Y2+PFEwTRwc7lcuPi15RjzwlLF8zU2UQDucrn8VgO0BrV/G6lhohqtiQBtFQPwOnIGnAE4ERERtQFTz+qKQRnxuHd8/SXi3pJizBjdPbHJzsWg16FLhyj551hL/eu/RUO6eMabDcyIw/WjumB41wTcenY3nNnDfZ5aJehmk+/tBiEDXmVXL4m//+st+HDlQfln75FpRRU21cwyoJ5xBpSBRrBZVG8Wk0Fe3+69BnzzoVJFp261wFhrDFlDSAGXViWpVeP4wQZe3uXuWpx+DtsU2dZgDmFzOLH9WBmOlFQrljsE0m3+aEk1Xvw1FwUqTQIld362CYOfXIC1B4o1t2lpz83f6XNRwPvZ6oRbtJZjtFXatT9hRnojCLUrSEREREQNEWMx4bs7zmjt05B1ah+Jnfnu8uFAGrCJhmR4AvCuidEY2ytZLj2XaDZhM/lmwKVtax0uef10fFQEAOV68O3HPGuUvT8jaq0dB6A5XsvmcGLToRIkREU0OgMeaTLIz817DXi13aFo8qUWYGuNIWsIu8MFowGa68e1AqxgXwPxOP7G6/m7r8Jaq2gm2NyV4DXCiDiX0J49kDXgf/9gLXbml2P5niLN/5d/2HwUADB36V6cfmNCI8+24cTrCW//sR+Hiqsx9/qh8m3eFxzE18JqdwIWYO/xCiRERci9DdoqBuB1pE6hx0q1rzARERERUcN0ai9kwIMMwOOiTBjbKwmbD5difN8U1W0054CrBOBiEzap/Dq+nnMqrvIOwN1jlLoltfMZj6a1Bnzf8QpMrJt7fO2Izn4frz6REQb5uVXbHYpgtsbuUGSXa1Q6botB6gcrDqBPWqzPNoGyOZyIhEGzBF0r0A428yk+D++xYiJ/c7oLyqyIF9biezcabGpShQWgXIJg8PO4L/y6E4eKq+ULVuL4Oi2htqZ8ndcyCO/Ts4nLMRxO5J2ownkvLQMAHHj2omY/v9bEEvQ66fHuTqGHhTUyNXaH35IPIiIiIgpMp/aepnC9UmP8bKnu7cnDkDPzXNX544ByRJrIolKCLq6/lcqm46L8B+A1dqci07y/yL2mtW96nM+2WksaD5/0fM5s7LpX7wy4eG6VVociuK2xO1BeY8eKPUVwOF2K7DfgzvT/5bXlDT4XqTRcqwRdKwAPdhSXGFh7X1RwOF3YdrQUtQ6n5ix1ACgsq1HMGrc5nLj+3dV+g/bGENfXi9/7WwM+Z8leObMdqFDvqu6dARc7ydtqndig0U+hLWIAXqdjXadQsUnF+Fd/x4hnFiHvhHbTACIiIiKqn5gBl9ZtB8NoqL9xm+SWs7vJ36uVoBuFbaWZ1vGR9Ze9FlfZsKewHGc+txhzl7kbevVN980cB9JT6Kv1h+vdxh+zySB3hz98shpP/LRdvq/Ia2Z5jd2Bv3+wFte+sxrvLd/vt0S7IaRO6FrPW7MEPcgMuBiwezeOe3PpHlz07+V48bddfkvqC8pr5Fn0kj92F8nd45tatSIA97w+Ysba33r2QDV1Jv+95fvxyeqD9W9YR2tdvMvlwuGTVYpF4C6XS/Fvb611aC4hAYCPVx3EJa8v9/m9PlUxAK+TrhKAH6wLvBfvDHwcBBERERH5EueSj+rWocmPL36Al6bbABol6ELwIwfg9WTAAfc68GW7ihSZ7NMz2/tsJ2V8tcrim0KsxSg3YbM5nPh6gyeg9+56Xm13YO0Bd4bxf2vzVMd0aVGrIPAmdQX3DsClpKd2Btw3UPbXm6ymVj2YBYAXf9sFAJi7bK9PUzpRQZkV5SqZ+mAvSgSaMRcvFFRrZMDF16ehwXhTdVUHgPzSGjzx03Y89O3WgDu+a71+j/2wDWc+twSfrz0k32Z3uBTP2VbrVPy/4t0o7+HvtuLPw6X418LdwTyNkMUAvI4UgBeWW7HuQDHOfXGpfF8TXyQkIiIiCjv9O8Zh0pBOuPO8ns3SZEn8AC/NMQfcmWJvYrAiBWPtAwjAiyttijLrxy7ug6FdtBtfuRu7NY/4qAjViwuAb08jsVzb6XQFFWy2D+A52DVK0KPrMvTBrAH31x1czIBL4+PUqK15l+SX1qhmyKNU5sWLvMv21YJ4NeKFAjEY1wu/g6XVdpTXXQgKZsSZqCnXgJ+o9GSapXXrTqerns7z6vd9mOPOoq8/6Ckxr3U6fQJwcQmJ1vKMhsyND0UMwOskRkcgwqiHywVcPjcH+4TOlsFcJSQiIiIiX3q9Di/9bSDuPv+0Zjm+OAc8RhhzppbBFYMVqRw5kGD5ZJVNzpjfdk533HhGV7/bBxLU16dveixmXpDlc3tcpFEuQfd2RCUDLnG6gsuyBhKAz/5lJ+ZvzUeFV4AUZXYHtVoBv93hux7dXxwpBmbeGXCRvxL0KlutaobcUM9YMO+gMNAAXFGCLjyuGF6MnL0I/R/7DRXW2gYvD2jKNeDi62NzOFHrcOLCf/+By95YoTnGLZjztte6FBcarLVORQWL1hp+vU6Hk5U2/DfnAErrGh0ePlmFp37a7vM7H8oYgNfR6XTyOnBvDMCJiIiIQpuiBF3IgKtlVHU6nZwFlwIpfyXosXXHK660yQF7bGT9w4QCCeofurA3UmLNeEAIsj/8+3D5+0iTAbee09332JERaGf2n7WV/HuRp3TXUU8m01tCANUKC7YX4LaP1/sEpe3M9b9GNodTEdTp/ATCYmBYqbG2OsZs9NuEze5wqQbg9a1H9y45lzLW9VGWoHvOU62L+5bDpYpZ58Foygx4tTA6rdbhxM78cuzML8fmw6WK110UTLxkdzoVFzRstU7FnPAajfJ+HYCbP1qHR77fhoe/3woAmPzuGryzfD9u+mBtwI/f2jiGTJAeb1Gd6Sj+jVq5twgGnQ4jmmHtEhERERE1jMmongHXYjToUCuUY/vbJz0+EmX55SipsssZ8NgAHqO+DPh9E3rh72d2xc1ndYVOp4PD6cKugnKcJTSp08psxkWaYDYaEGHUBzVP2+UKLgDXKnNX8+fhEsXP/gJhibXWqbhIEnAGXFhvflBomOwd3HmzaXRJr68ju3dZeyCN9gBl1lsMxsWRZJJtR0vx/or9AR13T2G54gKHvyZs6w+eRF5xJf46uFNAxxYvLtQ665qo1amxOxDtdWHlWGk1lu8p8jqK9j9krcO3CZv4e+5vCYFUyr5gez4AyFXL0si2UwEDcEF6nHoGXLoSVVptxzVvrwYA7HrqAs1xF0RERETUssQ14OJ6Xq0wwB2weD7oJ0ZH4Pw+KViw3bf5bmqcBTvzy1FhrZVHWAUyy7y+8u1rR3RRZC7vGNtD4zyBT6eOwHXvrJYTQ3F1jx9jNuJErc1nPy2OIANwcxCfd7ceKVP87L0WXdI+yoSTdSXE3pllf2vAxcz1sl3HMfbFpXj8kr71zjwX2WudqFEJ0LWyrmqPDWiva/cmZr3FwF+tZPupn3cEdMyjJdXIfvl3xW3+MuCT3lwJwN2A7v0V+/H4Jf0woV+q5vZlQgBuq3VirzDnXq16YNTsxQGdt8TuUK4Bt9Y6YTF5Xg+tCzfir0ZKrEV1m1MBI0hBukYJunS1qrjS88ctkCt6RERERNQyxDXgYjm6VjznnVmOijDi7cnDcIFKYJJa92G/vMaOsmp3QBVrqT+PVd9scX/HuGRgOgBg2hh3+fno7omYc80Qn2NHB3AeIqfLHYQHqrGd3NWqAGIjTXJgb6t1Krqh+ytlFgPtWqcL+4sqMfm9NaiwBlYODriDv0Ay4IXlNbj/qz+x9Uipz2MDwI3vr8WbS/eqPobT6cLsX3bgly3HNOeA16qUoAdKbGgmCaQL+rO/7ERBmRW3fbze73biUoJapwt7Civkn70DcK014f6W1NsdTsUacFutU3FRSLsE3XNQBuBthNYacOl/FvF/1rbShY+IiIioLRCDbrFKUaeRA/cOWKSsuVpmM7nuw36FtVbODsYFkAH3N7cc8L/e+dUrB2HNg+fhDKEcPVLI7EuP710OXB+XywWHSvmzloZUfIpBe5pKhWmMxSgft8buUKwr9pdZ1hr95a8juuSywR0BAEtyj+Nfi3zHWXkf+8r/rMLn6w7hn19uls/T23Pzd8rfi83kFu4owH+W7cO0TzYoGsKJ36uVoPvjcrmwIe8kymvsKKkO/IJDQ4hz0u0OJ/YeFwNw5b9PSVXw51LrVI4hu/erP7Gl7kKH+zHU/z3LhQstyTHmoB83VDAAF2hlwD9YeUD+hZf467xIRERERC1LEYAHkgHXK7eRM7IqTbDS46QMeK3QhC2AdeaNaIyl1+vkwF8idj2XS9CDzIA7nK4gM+Ce12n5/WMxKCO+3n2W3jsWF/ZPxSc3j1DMf5fEmD0Z8Iv+vRxjvcb/ajUi0yovr+9z+eDO8Ti/T4rfbbw7rEt9oaT15f7WlZdU2TDq2UW47yt3sH68wjPGq1pjDniw875/3nIMl72xEle/vQqlVb5LDho6P1xNmZABtzucOFEhVAF7BceHTwbffdxW6/S50PKqMOO7RtEt3vO8xMcSfy9PNafumTeDju3VA3AAuOyNlYpfxiqWoBMRERGFjAijTvhej6Fd2gMALuyfprq9uGY2ymSQs9Hec5jNRj06RLuzbWXVdpRbpRL0+gPw01KiNe+7SOO8/BHXtktd26PNwY06K6m2y+vYAyFmwM1Gg+LihppR3TqgY3wk3rh2KM7okYi0eN8APDbSKFcHqAW2lVYH3l2+H7sLPI21XC6X4mfv7f0x6nX1Bmxi0LfpUIn8/WmpMT73e/t+01EUlFnxxbrDAJQjzao0urXbgwyYP197CIB7nb1a1llrDJhWibg/4hpwu8OlCLq9X4cjJVUIVq3T5bfrvHihRbywcFQYNaY2L/3d5fsxf2t+0OfT0hiACzLaR2JE1wT0SFb/YylmwAMpdSEiIiKilmHQi2vAdfji1lHYPGucZoWjWCYdKWSWvTNzMRaTnGU+UlItz28WM89f3TYKI7sl4JzTkhT7Du7cHv+6ahC+njZK0d37hlFd8O+rBwf3BKGcHe0pQdcuc1dLwLtcwMQ5KwJ6vMGd4xXBpFGvg8montXvnRaL60Z2xr+uHqS4Xb0E3eS3tP2NZXvw5E/bcf4rnkZj7604gM/qglBv9WXADXqdoku+pIMwYu3tP/Zj9jx3EzSxBLu87nt/Abi4bt3hdCkayYlZ7yW5x/HTn0frtgtuDfgfuz1dxtVK0LUy4PVlxk9W2rBoR4Gi6kCxBtxrzbz3+nmtDLi/2g/vJmzevOeQy+dapSyN9/bkT9vrXd8eChiAC4wGPT6/dRS+vHWU6v0FZZ5yEpagExFRW3PgwAHcdNNN6Nq1KyIjI9G9e3fMmjULNpv/DstjxoyBTqdTfN12220tdNZEbuIHfpNRD4Ne53edtlhCLs7TtnutzY2NNMrrrIuEUlxxPNewzAR8dsso9OsYq9jXbNTj0kEdMbRLgiLgzExs16C5zYkxnoAxsu7xDX7GTwUyh1zLred0wwdThkMvnKfRoJ1J7p0Wg6cm9kdyjDLjna6WAbeY/HZXX7Wv2Oe2J3/arrn923/4H91lMuhVm8nNGHcapgud5//z+z4AyhJsqVpAqwTd6XQpfvdKqmyK1+znLccU20//dCMA39+zYJys9P2brJUB17pd8rf/5OCmD9fhPWH8mXgBwlbrVGbAvV6HhpSg2x1Ovxlw8fHEQF28mODv9WtI1r8lcQyZCrHBhUgse5HKSewOJ578aTtGd++ACf2CLyUiIiIKFTt37oTT6cR//vMf9OjRA1u3bsXUqVNRWVmJF1980e++U6dOxRNPPCH/HBUV1dynS6QgfuSur0waAK4Z3hl/Ht4CADgvy7M+2DuzFmM2+pSba3UG9w6GxSZsEQa9XFobzGxtUVpcJN6ZPAyxkSa5ZN5ft+m4SJNiio+3GItRke0Uje+birhIk+L4Rr1e87XVek6psf6bsKlRyw5Hmgw+648DZdDrVM/bYjTIpfyex3YpXpPSajscThfe+WOf6rGttU7FTPDiSpvfWeaAO0hvzJrtIpV/U62Mur9AFwB213U4/2HzUdxytrvjvvj8veed13hlwMX17oGqdbjqyYArO6SrUcuAS9xjzRr2/1hLYACuQuuK3K5CMQB3/zL+9OdRfJRzEB/lHMSBZy9qkfMjIiJqDhMmTMCECRPkn7t164bc3Fy8+eab9QbgUVFRSE3VnitL1NyShK7IgQTglw/thIU7ClHrdOK+Cb3k2ycN6YSn53nmMZtNBp9RX09c2k/1mCavyEv8TBlhNABwf360mBpehJrt1UxMfMgJfVNhNunx/SZ3mXN9ndrjIk146YqBeHnBLuzMV66vNtVdTBDLqb1LuWMtRjlbrPX5uXdajM9tMRaj3wBUrUN4XKSp3gA8MTpCUaUg0VoDbjEZfM77eLkVFV5juD5ceQCbD5d67w7A3T1dLI0uqrDVW92wal+xZqO5QBSV+wa9mhnwADPtYtJY7DbufYHGe0SY1gUcf7zHkHnTKkH3Poa//UM5AGcJugqtkRC7Cjwt+KU14CcrPb+gzibsPkhERBQKSktLkZCQUO92n3zyCRITE9GvXz/MnDkTVVX+G/NYrVaUlZUpvogaI9psxKJ7zsHv945VlABrMRr0eOeGYfhgynDFh/W/n9kV7904TP7ZbNQrRn31TI7G1cM7ax5TEmHQK85DDPQs9YwnC4Y4Zm3u9UPRLdHTy6inRl8jiUGvw7i+qbi4bua4SFrr7b0GXLy4IZbxa41ci4+KwIMXZilui400+W1orBZcBTL2zbv8XWLU61Uz7pERep/z3ne8QtH3CQCe/Fm7/L3G7sRJoSu5VsXB6O4d5O//77ONmgF9IArKanxu07qg4S9QFYm7ixnoMq/XwnsNeEWNekM/F4C3flefk26vNwNe/1g6fxcWGlop0VIYgAdB/AWQ/mHFNUPFKiMBiIiITlV79uzBa6+9hltvvdXvdtdccw0+/vhjLFmyBDNnzsR///tfXHfddX73mT17NuLi4uSvjIyMpjx1ClPdk6LRuUPjlj8Y9DqM7ZUs/2w2KoM375JlkVia7p1ZFY/RlNk577yRmK3vmx4Lf6RMbUI737XiRjkD7rlNr9cpnqNYmu9vTfctZ3fHonvOwcC6EWYJURGotGpnTtWyuYFUDaTEqs+GNmisXbcYDTB7Hfead1ZjcW6h4jYpOzzzgiz8ZYByyWmN3aHoSl5cafUJDl+4fAA+nToSd4x1l3j7Cz4Dofb6aGXAtQJwvyXcQgDrneH2Dm61MuDHy614Zt5O1ftqnQ1rwibyd/6hPq2KAXgDvfBrLpbkFioaMhwr8b0aRURE1NoeeOABnyZp3l87dyo/KB05cgQTJkzAFVdcgalTp/o9/i233ILx48ejf//+uPbaa/HRRx/h22+/xd696tkPAJg5cyZKS0vlr0OH1LsbE7UGsRrSO3MaF6nd2Eyc++0d2ImZ46YMwLt0aKd8HOF8x2Yl+y2Hls63c4LvRQvpfL0rQ8VAVsxKez9fb92TonH/hF74+xldcWbPRP8ZcLXRZAEEVSnC3HSxw7l35l5iiTCoZu73Ha/0uS3GbMSt53RHptfrve7gSZwQst5FFTafMm2pv1Qgo+sayqGREdZqVuZ9AURsXCbGN2VeHde9Z7F7rxEPRH1N2AJZA25zuLDjmHrllHeWPtRwDXgjTHl/Le4d71kzdPHry/HHfWORofJHzB+n04XV+4vRr2MsYprxf0wiIgpP99xzD2688Ua/23Tr1k3+/ujRoxg7dixGjx6Nt956K+jHGzFiBAB3Br179+6q25jNZpjN6tkqolDiHaD5y4CLJeje+ykz4E2XA5tyRiaOlFThvN7uteElQjDYOSEKmx49H/0f+011X2l9t1oAbqzLdOu9AnDxecRGekIJrRJ00ejuiRjdPRGA/8DtaKknqbV4ZwHGnJbsN2MuSRb6ACRGm+XA2KjXq45PU8uAa5HK7b0vyPzzy82Kn/+1aLfq4wCBldE31Pxt+Xj4uy14amJ/xe1ameJBTyzAlsfGyT9L8bfL5VIE4AdOKC9GeI9ja9gacP8l6JXivHSN8z9QVIkL/vWH6n3+RsaFggb93z9nzhxkZmbCYrFgxIgRWLNmjea2b7/9Ns466yy0b98e7du3R3Z2tt/tQ02/jrF4Z/IwzfvzTijXuL2ycFfQj/HJ6oO4+u1VuOnDdUHvS0REVJ+kpCRkZWX5/YqIcGeLjhw5gjFjxmDo0KF4//33ofcz4kjLpk2bAABpaZwOQqc+qbRaWk89aUgnzW39laCbm6kE3WIy4KmJ/eWy+YmDOyLSZMCVwzKg0+kQYzFpZsGlIDstznfttJTp9t5VsQY8wBL0xvj7B+vw1YbDcmO0a0d0RnbvZNVtk4UMuDiyTasJW2SEbxM2LXEaAXggpH/v5gzAAeDjVXk+I7j8lWrn7D0hf++qmyPgnZleuENZji8Gt06nq9EZ8NeuHowxvZIU93+z4QiW5haivMauWSnhb513mytB//zzzzFjxgzMmjULGzZswMCBAzF+/HgUFhaqbr906VJcffXVWLJkCXJycpCRkYFx48bhyJEjjT75luB0Aqkqf5Qk87xm+xn8zYLQ8PGqPADAmv2+Mw+JiIhaihR8d+7cGS+++CKOHz+O/Px85OfnK7bJysqSL6bv3bsXTz75JNavX48DBw7ghx9+wOTJk3H22WdjwIABrfVUiJqMFHB9NW00fvrHmRglNNPyZhQuWHkHalKGGmjaANxbRkIUNj56Pp6d5MmEikH0d3ecIX8vfW41qgSnUtDu/dHWpNmErflWtv66NR8VdVnRO7N74tZz1CtrxBL0xGhPNlxzDbhJ2YTt3CxlYC+uKZey/YF02Fd7HPcxmr/S1Tsg9jcv+9lfPEuPpCXkWvPOJWLgW2ELPvgGgG1Hy+Qy8+FdE1QrgL/fdBT9H/sN178bfOK2zTVhe/nllzF16lRMmTIFffr0wdy5cxEVFYX33ntPdftPPvkEt99+OwYNGoSsrCy88847cDqdWLRoUaNPviX0SI72G4CXe/2SN6QReqDdCf2psTvwy5ZjIb/mgYiIQteCBQuwZ88eLFq0CJ06dUJaWpr8JbHb7cjNzZW7nEdERGDhwoUYN24csrKycM8992DSpEn48ccfW+tpEDWpSCF72a9jnN9tjWIG3CvIvuXsbvjbsE7I7p2MLkEuVwyWxWRQrN0Wv+8qrGH297lVCtoDXwMe3EWFK4b6VhJMG6MeWC/aWSiXSEebjTg9MwHL7x/rs50YMIsBuNYa8EiTQbEcwDsT20PoIl9fBtzfsoKmyIBLDdzqU+q1ZtvfuLN9RZ7y8j2FFcjNL4fV7j8uETPgFQ0oPweAT1e7k49REQbERZoUvRMk3knOYIR6PBRUAG6z2bB+/XpkZ2d7DqDXIzs7Gzk5OQEdo6qqCna73e9Ik1AYTfLN7aPxt2GdMOviPkiI0m624a2kyob1B0+qjgfQUt+Vpvq4XC5c985qTPtkA97+Y1+jjkVEROHrxhtvhMvlUv2SZGZmwuVyYcyYMQCAjIwMLFu2DCdOnEBNTQ12796N559/HrGx/rsvE4W6W87uhuQYM24+q1v9G9cRg1OLV6Bm0Ovw/OUD8c4Npwc0Jq0piQ8ndkmvEjKYt57jfp5dE9th8qguiK/7/Otdvi6upY61iGvAg8vrPTmxH/5703A8fFFv+baR3Togs54u9tIFkU7tfbcTM+AJiiZs6mPI3HPAPRcOTktRzizvkaQSgGtkwHulxuLSQb7j3KTHARrWhK1/xziseeg83Ds+C6eleM5HqxeB9xx0f83OvI1/9XcUVfjOGBdV2534duNh/PPLzZoj1wL16pWDYDEZVJdINCY+alMZ8KKiIjgcDqSkpChuT0lJUZSn+XP//fcjPT1dEcR7C4XRJEM6t8fzlw9Eh2hzQH8kL6obSbBoZyEmvbkSF7+2HAVlNThRYcXxcv+/yGIG/M/DJX63PV5uxaFi5brz33cXYd3BkwCA+Vv9/zscK63GtqPuuYNfrjuECa/+7nM8IiIionD34IW9sfrB85AUE3izQDGT15C1ws1FbKQmBjtit+kHJmRh4yPnY8k/x+CJS/vJt3sHnNpzwIN7vhaTAWf1TFIcI8ZirLeZm5iRH99XGZO0F5JmYpm/Qe97IUE6Z/G80+MiFZnsHkJAXl8GPKN9JGZf1l/1caRj+suAp8ZaFJ3bJZEmgzzfXPx3TI1Vr9CdOGcFpry/BqV1o9H8zctWM/sX9dFh0kPX2B24+/PN+Gr9Yfw352BQx/Y2oFM8AOX/N2qvQbDaVAa8sZ599ll89tln+Pbbb2GxaJd1h/poEotJj3F9UhT/w2Z4XYUrLLfi1YW7MOaFpRj97CK/3fjEAPyS11coGiJ4O/3phTjr+SU4KVxx2n7UUyFQ35WoUbMX46J/L8eRkmrc+9Wf2Jlfjsd+2OZ3HyIiIqJw5F1+XR8xAx5M4N7c+qW7S+e9g0MxA67T6dBeJfj52+kZ6JkcLWfITZpN2Bq2rj0qwrNfrMUY1IWL168ZgmX3jsHMC7Lw0hUDNTvNe8/IbhdhwKZHz4dOp1O8JjEWI/qkxcrn0jOIEvTYSBOiIoyY0DfV5z7pYkCMRXsAVaf2kYr1+RLx8cTu4B2itQPVJbnHsaRulnkg3eNFv+86rnq79G8txjQHi33HtQVDeg7iv0FT/H8T6hnwoMaQJSYmwmAwoKCgQHF7QUEBUlN9f9lEL774Ip599lksXLiw3qYsoTia5KyeifhjdxEeurA3rhnRGVERBkycswKbD7uzyRkJkT77/L6rSF4jvqewQl43tL+oEvd+uRk3n9UNE/ql+rThv/rtVXjh8gG4Ypgy8y9ezdlVUI6uSe2QHGNBnvDLn19Wg5OVNtU/oOLj7C4ol78vrmpc+QgRERERKdeAq5VIt5Z/XT0IL/+2Czeekam4PZBu0dFmIxbMOEf+WbwmERvEHHAtYgAeYzEFlUk3GfTo0qGdalO29DjPZ3Pvz9qJMWa5xF58DtEWI9654XSs3ncCvdNiFYFhbD0l6BMHdaw7J9+LNlLZvL+qWoNepxrci7dVWT3/XvU1g6u01WL+1mOY9skGv9sFSjp1sclbQzqgS9pHmeSLOeLr7F67X66xV2BCPQMeVAAeERGBoUOHYtGiRZg4cSIAyA3Vpk+frrnf888/j6effhq//vorhg3THukVyl6/Zgg2HDyJs3omyp0i+6THyQG42vzEIyXV8vdiAH7dO6txpKQamw5twJ5nLlTtTnjvV39iVPcOij/eJyo9pewfrDyAX7bm45azu+FAkbKEfEd+mTxjUVRY7lmXLv5PG2xpChERERH5EgOJTu19kzOtJS0uEi9cMdDn9sb2IVLOAW9YAK6D5zWLNhsbHMhLXrpiILYeLVU0VPMOwMUwONpsxPd3nAFjXaf0hHYRuKB/ms9+UisMtSD562mjMLRLgub9gXS9N2p0ahcDejEDrratqMbuxG0fqwffRr3OpyqgPtEWI05W2VEgzGivtDY80BUz3coAvAlK0EM8Ax70b/iMGTPw9ttv48MPP8SOHTswbdo0VFZWYsqUKQCAyZMnY+bMmfL2zz33HB555BG89957yMzMlMeZVFRUNN2zaAFxkSaMzUpWjGnom+5pMNMx3vNHVm1Nxq66jPPO/DI5MK91umCtdWg2R3hv+QHFz2J5+S91a73f+n0fcva5S9alNRM7jqlfNRIbw1UKV4bsDicOnqjEnZ9txI5jLd/wjoiIiKgtEIOiUArAm5I4Zrop5oCLgWBUhMFvZnfmBVn1Hm/S0E6YdXFfxfIB78/a3ksLBmbEo2+6b4d7MZiWgjq1wFcKvr33kWjNYRcZ9XrV7HmEUNovrtk31fN6+1v+GhkR/HIBqQRfjCGCLW8XeXepl6hV8YoCWSPe5uaAX3nllXjxxRfx6KOPYtCgQdi0aRPmz58vN2bLy8vDsWOetvFvvvkmbDYbLr/8csU4kxdffLHpnkUryUr1NGaIF5o+DMqI99l2V0EFauwOTP1oneL2vYXaayc2Hjqp+PlEPeu7x9WtOdmpEUTnl3oy6OL/MLZaJ27973p8v+log2btEREREZFXBjw+dErQm0u7CE8GXB/kenlJerwncaXT6TTXkk89q6vm/O/6+MuA1+fC/qmIijDgr4PdJeb1rVGPMPgPbt+8dojq7UaNEnS1oNz9OP7Po8rPjO5IjYx8fRdRvJvIldeNIYv1s7ZdizID7nncCKPeb7O6FI3mcyJ/Fx9CQfCvFoDp06drlpwvXbpU8fOBAwca8hCnhD5CBlxsqjCyWwJW7T+BkirPHL7V+07g6Z934FBxNdLiLCivqUWFtRZr9ms3XDt4wl1a7nC6sHhnIQ4U+Qbr2b2TsXCHu8nC2T0T8b81ediZr54Bzxcy4OKaDZvDKc8BLKqw4oGv/8RTE/spsv1ERERE5F+p8NkvNa7+QOFUJI4lFMvFG7qgsW96HF68YqBcTapVgt6YGdo+AXgQEfica4ag2u5AVN3FhvqC1PoC9Av6p+G2c7pj7rK9itsNeh1Met99xcebNKQTvt5wGJcOStcMzOXzXrJX874ojQx4apxFjj+89UuPQ63DpZgzLlUFxEWZUBbkTHCtDLhBp0NCuwifeebiOW6vp2K3Ta0BJ6WoCCP+uG8sdDp3Ocqca4Zgxd4iXDuyCz5enacIwMuttfjvKner/jvP64lft+VjSe5xfLDygObxiyttuPi15bh0UDqe+nmH6jZ3ZZ+Gvulx6JrYTr4gkFtQjlqH0yeAVpSgCwG43ass57O1hzCqewcA7hL3OdcMQWZiuwBeESIiIqLwlZXmqY4MpTFkzcVs1OP0zPYoq65FF5V+SIG6fGgn+XutzG5sYwLwekrQ/dHpdHLwDQSSAa//2GrBs9GgU23SJpa8PzmxL87vk4yzT0vC0xqxQSAiI9RDwJRY9QD83KxkzLygN+78fKNqoi8u0oRDqPa53Z8MYYmGWDli0Os0Z5wDQHIAXdKr2mIGnDwyhD82Fw1Ik+eBHz7p+eWd939n4cJ//yH/fNmQTnC63CMCDmhcZZJsOVKKLUdKNe9PjbPg7vNPAwA4nS5YTHrU2J04UlKNLh3aybfP35aPDQc9Je3KANz3muX2o2X4z+/7AAC3fbweXRPbYUK/VFxa1+GRiIiIiJTS4iKx5J9jGpWtbQmRJkODG1WJnxp1Oh2+uHUUnK7A1jkHQisDLq43D5Z3Brwxp1pf87NALryoHcOokv323jYqwogJ/dICOg9/IjVeY60RYI9d3BdxUSakxan3NWjI7/u5WZ4Z7mIGXK/TISFKe513vJ/7JBU16tnzUNH2L821kjvG9AAAPPPX/uiTHovxfd2/ZP93bg9EGPW4engGeqfF+jtEvQx65S+oXq9Dh3bu/3FOCtn3p+ftwO2fbMA6IQCvELoWqq0R2VPoaZK3M78cv2zNx52fbQrovPYdr8B+lXJ5IiIioraua2I7JATQKKo1TT3bPdM7u3dy0Pt6rx/2nqXdWFprwC2N6I7u/ZlbF9QqcCUxwM7sEIWPbxqheb8W9QBcY623xvHUsuh/G9YJD1/Uu97Hj9LIgLfXyDxLTdvSNJZVNCQA79zBk8QUM/9Gvfo8+mAeS6xCDkXMgDeT28f2wKShnZBet57l+csHYnzfAvxlQDoA9x+r3qkxjeo6nhgd4VOqEhtpwpGSanndRGmVHe8u3++zr7iuQuyoKNl0qCSoc6mxO/DrtnycnpmAc19aBgDY9dQFYVF+RURERHQq+b9ze2BktwQMzmgf9L4TB3fEtxuP4KyeviNvm4LWZ8dgysYl8/7vLPz051FMG6Ns3tbAfnEAlCXyn0wdqZiE5H2/FrXgWesihlam26CSMY82m2AWLpBojRvTGovWXiO7LAXgWn0N/AXFL1w+APd+9afitvduVI6lVmTA9Tq/F7BiAmj4drLKf+Pq1sboqJkY9Do5+Abcv5iXDemk+KOSFKu9huH+CfWPWahQaXYgdSF86Nst2JB3EgeL1TPRxcJMcTVaHde1Oiq+8Gsu7vxsEy6ds0K+raQ6tH/5iYiIiMKR0aDH6O6JDRpHZTEZ8PmtozD93J7NcGbaTc5izMHnDfukx+K+CVmI8Spfb0gwLxGDZ7WYOUIjgy9Sy3YbNbudq98uNsPzPLYeFuH1ExudibSasLXTeI2lqod0jRJ0rfX5idERGN8vVXHbm9cOUZSfA8GtAQ+kF0BJtR2OIOectyQG4K0oOcZzFemu7J64p24tNwAM7hyP96ec7rNPVmoM/jbM3ajC+xca8FyBOnyyGpe9sRLHy9UD7eJ6RpppKShTP94Xaw8BgOLxyjS6FxIRERERqVErQZ84KB0ju3VossdoTMG8eH5RJt+Atb7u5ABUJw1prQHXqghQ6+EUYdQrstuJMeqZZK0AXKsMXgqQtTLgWuvz46MifI6plun36YLulYm/eGC68Fj1X4hxuaDZRT0UsAS9FYld/LomtsOY05Lx0oJdANxzFb3LL/511SCc3ycFkSYD/jYsA6cJc8gl3iUgh0+qdySsb6a4lvzSGnRV6Yju3V0S8P+L73C6mnS9UDg6VlqNf365GTeO7orz+6TUvwMRERFRiPMOOE0GHV69anCTHHt41wSs2V+Ma0d2bvAxIiMMePPaIah1uhCnkqkVzz/WYsT7U4b7bqMSgAdbgl7r9P3sbfYOwDUy4Fol6PUtHQ12DXj7KJPP81J7ngbhOeq91oDPvqw/Lh/aCX/sPo6SKrti2UTXxHaYOKgjXlm4y+eYJ6tsIduLgQF4KxID8PZREYgWrujEWIzoEO35pblkYLqiA/mwzATVY3r/DzDrh22q2zU0A15YXuNz25frDsFa6/tHQKsBwokKK8a/+gfG9ErCi1cMbNB5NCeH0wVrrUOzQUVLcblc+PNwKXqlxqj+oXz0+21YsecEVuw5gQPPXtQKZ0hERETUtMyKEuoIvDV5mJ+tg/PhlOHYmV+GgZ3iG3WcC/qnad4nnv9LfxuEoV1819kP7uz7+FrZZ+0AXCUDbtArHl9rTbdWBnxsr2QA6rED4C5Rj7UYfWZ+awfgET6zzevPgEMROHdPiobJoMeK+8+FtdapuOgRF2nCndk98dri3T6vx8lKG5Ck+VRaFUvQW1FyrOcqUkK7CBj0Ojx+SV/cld0TmYntEGMxYXT3Duia2A6PXdI3oGMG2oWwSmVA/aQhndC/YxwGdorT3C+/1B2AW2sd+N+aPGw/WubTWEGiFYB/t+koiiqs+Gr9YTg11mdYax34z7K9yFMZ01Ztc+Cif/+B+zUetzEOn6zC+a8sw6jZi1HWyiMMPlmdh0vnrMATP21XvV+ruoGIiIjoVCUGkD9MPxNDOgffKE5LZIQBgzu3V5233VTELLLWuu6eKTH45vbR+HH6mfJtWhlwrax0rUr1qcmgUyRt2pnVA221AHz1g+cpxitrURtF5i8A1+t1iqZ3qhlwrzXgYjd2af15O7NvdbDUGV/cXypRb2iysSUwAG9FYgZcanpww+hM3JXtWQv+6dSRWDjjnIBLKNRKYQDg5jO74poRnTH3uiGa+959fk/8+I8zMVj4Q5caqyw1yS9zB+AvzM/FzG+2KOabe9MqQa8WGrmtOVCMpbmFPtv8Z9k+zP5lJy6fu1JuMnHwRCVstU5sP1aKbUfL8Pm6Qygs883IB0tsYvHc/FzsO16J0mo7DrTyKLWHv9sKAPh0dZ7q/VoXL0LBkZJqrD9Y3NqnQURERKcYMeBszKzr1hJh8AS33tlf0ZDO7ZGZ6Al4pU91gXZVr1VZA27Q6xTj2rSqOdUqK1O8PvMnx5jRPsqEG0Z1Udyutg5cDMA/u2Wk/L20XNboFWB7U96vV2TuIyO0X0NpPb54TGm8WSiPIjv1fqvbkHZmI646PQMX9EtFZgftK07BrJUW/wcQGxYM6dIez/y1P/prlNwkRkfInQ2The7sPVOi8fktI+XGb79sycf8rfn4vK7pmj8lGgH4oWJP5vaqt1bhxvfXYsWeIsU20vELy61Yvb8Yv2w5hnNeWIp7v9qM9cI88y/XH8aqfSfqPRd/pn60Hue+uBRVtlrsLiiXb6+w+nZ8V+s42RwCeRy1tT9N5fDJKmw9Utrg/c94djEmvZmDnfnqY/a+33QEj36/FTV230oMIiIiCl9iM7JARnqFGrEJm1YG3LOt5/lJiZV5d56Fq07PkG/XzICrJGL0emUGXKvU3N8yywvqmjw/dFFvrHv4fDx+aT/F/Wqz48Xu6T2SozH3uqG4ZkRnXD/SHbyL/6YGlQ70ygy4u3mbtFmkn3OVsuPi58kuHdy9qopDeBQZ14C3smcnDWjS44mt+a8cloEfNx8F4AnMk2PM0Onc3QEBd1f1F68YiMgIg1yOI3Znj4+KwIhuHWDQ6/DFusPIL6vBbR+vD+hc/ptzAN9tPIKrh3fG/G35GNgpDrMu7ov9KpnlFXuKcEYP9zzJIyXVOFLiCdJ/2HwU87YcAwB8v+kovt90VL7vhV9zAbivtgXbHfNoSTXu/WozVuxxB/BbDpeiQMioi2PejpZUY2NeCWb9sA1PXtrX79qfpiBepPC+EippzvEKZz63BADw+71j5SuJ9SmpssFo0CNa+CO8Ma8EWamxPtve+dkmAO4/2IGM3CMiIqLwIOadTMZTr2GvMoMfeAAufaqLizRhaJf2+KwuGaVVBaDWFNmg08FiDCQAV95+y9nd5O9fu3ow8oqr0C0pWnXf60dl4sL+aRj61EL5tthIz2c/HYAJ/VIxQZjWJGa41S5KiAG4XqeDQa/DtHO6I7+0BukqGfdbz+mG95cfwD3j3FXD4kdiqXr3ZAiXoDMAb2PEUpdBQoOHLnVBlMmgR0qMRS4lN5sM6NdRuea7T5onYJL+5+6Z4ttxvT4nq+w4WWXHc/N3AgA2HyrBRzkHVbcVxzFsP6rMmmqVYIv+2H3cbwBeY3fAZNAr/gd/54/9cvANAHnFVTgplKtU1pXKl1TZMPrZxfLt0z7Z0OxNz8T57Wod5gHllU+XyyXPtGzKJnLrDhZrBuCLdxYgxmLC7oIKvPhbLoorbYi1GLHmoWx5G7WrnKL3V+xnAE5EREQy8aPDKVmCHkQJvfi51ClUP4q3awXxt53THVW2WpzXOwVXvbUKgDsDbhZK0LWyx2KWfO51QzC+rxAsG/Sawbck3qu5W1K0GdeP7IJapwsdVDqvGw3KANvnfpUS9fv8fD6ceUFvzDj/NNWRdX3SYnFeVjK61/McWhMD8DZGLB+PNhuxcMbZOF5uQ6f2niAqPV4IwFXKWvqkx2LhjHOw73iFnJUOtLlbQ4lXqaS11+dmJeOP3cflOYcDO8Vh82H/ZdFbDpfi993HcevZ3WDQ6/Dib7mYs2QvAGBktwS8/LdBSIuzQKfTYeOhk4p9Nx4qUfwsZcDFkveWIjaO0JqnLmbAK20OOfM864et+Gr9YXx122j0SYsNutGIXQj4tR47v7QGf/9gnc/tZTW1OHDCc/HAqVJKLx6/xu5EWY1dc34kERERhRedEKBpdQYPZeJna63Z3mrEj0xiAK5Vgh4ZYcBDF/VRLFv0zoCbNS4AiBnwronRitc8EAa9DonRESiqcH9e1el0eHJiPz/b+39NxPsDXXqrFnwDwKShnTBpaKeAjtFaTr3LSuTXaSkxeH7SAPz3JvfMwR7JMRjVXZkZ7igE42oBuHu/aIzrm6pY0+E9S7Bveizm33UWHrjAfwbzymEZ+Ovgjorb/nP9UMXPx0o9pd/76wK4PmmxGNPLs85kxrheuG9CL/ln8f/PYyXu/S9+fTle+DUXH686iG83HpGDbwBYta8Yo59djHeX74fL5ZJL4Xsmu6+QbfAKtMvr1oCrlcw31jt/7MM7f+zTvF8MwK21ThwrrfYZASeudxHL5T9elYcauxN/eW05pnywNuhzEzvke4+ZOFpSjcd+2KbaOE+Sm+9ZR6/WSd47qC+uaL0SofUHT+LgidZtthcOymrs+GT1QZyosLb2qRARUYgTM6TBBoahQNGErZ4SdC3BrINXXLAwKDPger0OC2ecg5kXZOGMHp54IFIIwOub/a2lviy5SLyQonZNwqj3nyFva5gBb4P+JjRuUJMe71lLoXX1SM3/po7Axa8vR43dncEc0CkOWamx6JLQDusPnsSC7QU+++h0wDOX9YfL5cK3G48AAGLMRkWpCwDkl7nXPH+57pBcct41sR2mntUN93/9J2qdLpzRvQNKhIYKT03sj6W5hfhtewGOldagUmiatu1omRzE6nXKtSFP/bwD7y7fj5IqOwx6Ha4b2QWzftiGnULgCEA+3vZj6o3EguV0uqDX63C83Iqnft4BAMjunYJMlTU83qMTRs1ejIR2EVhx/7lYkluIX7flK8rly2vsSI2z+HRGX7brOGodTkWJf32qhC713udx52cbsfaA/4qAHcc8r6NaJ3zv5nwnKq2qr0FzOVlpw6/b8tG/UxwmvbkSAFSXFIhl/dQ4D327FT9uPorvNh7Bl7eNbu3TISKiEHaqv/OK69aD+fylLEEXjhfEMfQ6nSK5ZtC7k2o9kqMVn9/EoF4rGVef01KisWZ/YBNvxBJ09Qy4/y7pgWqnseY91DADHobEpl7iVbL69EyJwQuXD5R/Pq1uXXhkhAFvTx6muo/L5f4fSfEHqO7/K/FqlzRfXJwpnpnYDnFRJsy9fijeuWEYjAa94tw7tY/E38/s6t6/rAabhRLy0mo71tVltL+9/QyfZhNSxr1bYjvVJhaAJ6vcmG7gkg15JzH8mYV49Put2F3oCVCX5hbi4IlKLPS6eHFCpXFEcaUNB4srcfsnGxSN6ABPtl5tv4Jy36zjS7/lYvqnG2Cr9V1fXmn1ZMCPlSpnjdcXfANQdD5XC8C9byuqsOGP3cfxr4W7UVrXM2BPYbnPfk3l/z7biAe+2YLr3lkt32atVXZjn7NkD0Y8syioUXQul6vJGuM5nC4cKKpssa77zU1qBhnI7w/gru74ZcsxzVGGRETUdp2emQBAuwltqBOD22BK6JUBuJABDyJANuh1iuSBXvG9ZzsxqG9oBvz/zuuJxOgIXDOic73bKtd4+7+/MRnwKPOpkVtmAB6GxICzviZZ3tKEToS9NBqzxVqMUDusNFJBKln/7o4z5FEGRRU27D1eodi+e5JvYNyxveePcfuoCPl8jpZU45et+fJ9v20vQGm1HVERBvRNj1XMExR1S2qHjARlk7H2dbPUK6wObDpUgl0FFWq7Yv3Bkzjr+cWaTeK2HinFpa8vx6Q3V+KyN1aiqMKGj3IOYk+h53gLdxTinBeW4uaP1mGLsL5dq3Pj3kL1gPCG99ZgaW4hVu4t8rnvyEllEO1wuvDa4j346c9j+Gr9YZ/txQx4vrA0YNEO3woHNTuFDHhZtbKEfd6WY9iYV6K47USFDde/uwavLNyFq99ehTeX7kX2y78rKhp+2HwUM77Y5BMoe9t6pLTe2fB/7Ha/RmIFgfg8AXd3/cJyK972s0zA2+2fbMCZzy1WLbsP1ku/5WLMi0tVq0raKvF1e2XhLkz7ZAOmf7qhFc+IiIhaQ1yUCX8+Ng5L/jmmtU+lQcSANpjr6Mo14J7vg82Ai8QeO1of+RsagCfHWLDmwWw889f+9W6rzHD7Pp7Yr6gx6/6ZAaeQJXYLVwvY/BFHlHl3Rh/WpT0AYPKoTHx680hEGPSKhgyPXdIXX08bjWuGu6+U9esYh7cnD0OPujXY1wsZyU9vHuHTYdH78RNjIpBSN2rAWuvEf1f5dlgf3jUBRoMe8VHqTb46xkchs0MUbh/THbec3Q0f3zQC/zi3JwCgwmrHRzkHVPdbvrsIX647hEPF1Xjw2y0+jdqqbLWY/ukGbD5cqrjPoNdhtxDQLxfmn4uZY7VMNgDcoRGQlNfU4sb318rjvboltpNf1yMlVXA6XXj4uy14d/l+FAnrcH/ectTnWMoMuDswPVRchZs+9G26piZfCIDFDOaSnYW4/ZMNePKn7YrtxfMRy/2/qVuyAAD/97+N+GbDEXy5zveCgWTf8Qr85bXlGPvi0oDOU3TOC0vl/xdKhcA80PdNp9OFX7bm41hpDX7afCzgx7XVOvH4j9uwZKdyTb20HGKLn+oLa63D58KBt9z8ckVlSChQu0Dyy5ZjGPDYb3jrd3fPhk9WuS9qSRdLiIgovMRaTA0ODFubeN5qzWi1iFuKQWogJeLDurRHpMkgr/N+6MLemDgoHWefliRvo5VZbsys9UAb/YoXEdSSf2pd0BuiKSYAtYRT8zebGsVk0OOyuqZoU87oGtS+GQmRuGhAGq4cloGkGGVTtv9cPxT/vnow/u+8nhjVvQNyn5qA60d2ke+3mAwY2qW9ojRGp9Phqbog/WhdMDFxUDpG13Vf92bQ6/DxTSMw55ohSIuLhMVkwMhuCfL9t4/pLmfF4yJNePiiPgCAhHbqGfCO7SOh0+lw34QsPHhhb5zZM1HetsJaK49ES4xW7n/du6uxWAiafvrTHci6XC5UWGvx35yDOHCiyufxHE4XdmisKc/NL8d176zG77uO+2Stg9U7PRYDO8UDcGfA1x4oxser8vDkT9uxq8CToV67/yScThdKq+1yMCdmwAvLrXjh151+A0F/xAB81f4TqtvsLlSvMMira44mlnUfVymnl6w94F6HVGlzKBrUAe5g9Vhptd+S7mvedl8A2nrU81xX7zsRUBl6UaXnvPLrycCLvlh3CO+vOODTLE963Y6WKI/lcLrw1E/b8du2fNzw3hqMnL1Is1y/1uHE+Fd/x6VzVjR5Kbd3r4FgDH9mkc+FgxlfbAYAPDPPPbLQ+7153/EKXP/uatULhnaHU9FZn4iIqDVFGPRIjI6AxaRHehBl9N7dzCWBZMC/uHUUNs06HzF1Ge+pZ3fDq1cNVgSzyvFuQpf1Fhj1Ji4nMNQ3B7wxGXDzqZEBPzUuE1CTe+GKgZg0tBOGdG4f1H46nQ5zrhmiel+HaDMuGZiu2DYQI7t1wMCMeDlTN8LPPG8AOLOnMjh/4fKBmPTmSnRLaoe7zz8NVw/vjK1HSjGiWwc5mI7WWBOitr5I2ra8plbugN49KRpFFcpGE4VCMLiybp74a4v34OUFu+Tbx/ZKwpLc44r9/tQYpfbO8v0AlFnxhkqPs8izH1/8bZfivm82eDLLNocTBeU1uGJuDg6frMa6h7NRafNeD70XDVVWY8eJCis6RJtRWKYePG/TCO7z67YXA1p/YZ/UHBAA9h6vQN90z3z72z/egKW7juO9G0/3e75FFVbFxYa9xytx/ivLsPvpC/3uJwbKufnqF1jUiMsR7A6n/CYrNRvML6vG1iOlSIuzoEO0Gd9vOoJ3lu+Xf1cA4Mt1hzHzwt4+xxZ/P09UWJtslOCewnL89Y2VuOnMrrgr+zQAwO6CcqTHRyqmJvizYk8RJg3thBd/zcWaA8U+GQLvq/QPfbsVOftO4I/dRYqGeQ6nCxf+6w+4APx619nybVL2weF0obzGrlpNQ0RE1Bx0Oh1WPHAuXK7gyrvFt0K9RrCsRa/Xwaz3H3yKn8t7JEfj4oHp6NAuolEBb6D6d4rDorrElXoG3H+GPFDMgFNIM+h1OKNHomIMQWv6x9geAIAL+qXib8P8d3H3lpEQhVUzz8P/po6EyaBHRkIULuifpsh6i3/U/i5k/Tu19w3ApSAiN78c1lonTAadzzpxb7kF5ThebsUPmz0l3SO6JuDu80/z2dZWl63zriBoiNRYi+rtfdJjkaHy3ADI3eglo2YvxuG6jPuqfScUa6/9CeTv9b7jlRj61EI8+O0Wn8x/el2lwj6NDHNBXeB9uNhTSVDkZ4zVUaFh3Mo9J7Ci7kLG2gPFWLSzEA6nS3FxRM2qfScUSwQAwO5wqa7rFhvYHS3xPPbWI2X1voa1db8DYrVBnvA8S+vWzq/YcwJ/eW05xr/6B1buKcI/v9zscyzvxm92hxP/W5MnNyEE3BeTtPw35wBW7CnC0ZJqzN96rN7Gbw99uxXlNbV4deFuAMB3G4/g/Fd+x4PfblHd/tdt+aq3A8DrS/Zgzf5iWL2aAYq/W3aHU/PfPb+sBrsLK7CnsAKF5TX4x/82YNATv8kZ9ls+WodBTyzgqDkiImpRZqMBFlNwn7HFi9EO4fumKsX3Hu/22tWD8dglfZvk2PUZ0MmTFFErMTfUM6asPtJI4VCf/y1hAE4hIbtPCtY+lI03rh3SoLUfeq+uj97EP2pnn+bJoKsF4DEWdwAuBQVdOrRTZPZFSTFmZKW618Iv3lkgZzS/v+MM/G/qSHkdtjezUY/Iev4wXzwwHV9PG4Xs3sn46R9noldKDCYOSseLV3g60b9zwzC8e8MwJHsF8yO6dkCf9Fi/x1ezt7AS5QE2EUvRCP7VfLo6z2fMW5pGWZbUfG/N/mLM/mUHPl93SL6voLQGTqd7hrsYKDqcLuwRAuen5+3Ate+sxrJdx/HNBs+68frWQ0//dCO+3uC7zjxPWE5QUmXDte+sQr/HfpUb54kB+JGSavSd9Ss+rutJcLLShtm/7MDhk+5j/L7rOPrO+hWfrclTzJiXfndcLpfPrPSiCiuueWc11Cq/K6y12F1Qjpnf/IkTFVbM+mEbZn6zBf/3v43yNlol6H8eLsEj32/Dte+sxhVzc3Dbxxt8LtB4E5cM2GqduOvzTQDg05kfcF/QuPW/631ut9Y6FRcfvNUKT3TcK7/juBCAi//u4nryxTsLMW9LPqpsDqypW44gXW3/Yt0h7CksV+36T0RE1JqkpZRXDfd0ExcvrgfThM2f1hzv1q+jJwBXa7ImjilrSAb8q2mj8eVto3DxgLSGnWALOzXy9BQWmiIjrEUMXDI7eLqrq5XlepfRdk1sh7NPS8LX00bLc6MlWakx6NQ+Cjvzy3H/1+4MYLekdhiYEQ9AuxSmY3wkzumVhPdXHFC9f8oZmZh1sfuq5Ds3uP8w/3r32fL91loHymtq0a9jHPp1jMMvd8bjpg/XYVNdgJkeH9mg1/OVhf4zxKLBneNxbIsnuzmwUxw2a5TXSwZlxGNEtwS8t3w/Zpx/GqZ/ukHRjRwAxvVNxZtL3WXv/1mm7EJeUF6D53/Nxdxle/HcpP648nT3m9W9X26Wgy3RDe+tCei5dE1spwiGvf3lteV4qW7ZxpvL9mJF3ZKDn7YcRUJ0hGpm/eHvtuK6kV3w8Hdb8fOWY1i8oxALZpxT183diQe+UWaMb/3verxw+QBcNCBNrpIIxGdrD+Gzte6LFNU2B75TCYS1AvACYVnAkbqLCF+uO4zLhrivIM/85k8cKKrCRzcNh8mgh8vlUsyG965qqLE7FFf839HoIn+yyqbZQK7G7lBk7L3/XYorbegQba47f88x/r1ot/x9WbVdrjIAgKW5xzFnyV78bVgnPC+MUiQiImptH980AsWVNiQLiQ2xGK2p1mi3QKW5puQYC/5xbg9UWGvRXqUvU2PngMdFmuTxdacCZsApLAzL9Kx1z0xsh7cnD8O3t49WzZqnxVkU49ZGdHX/Dz20S3ufZm4juiZgcOd4xW1nejWQe/eGYbh9THecJaxd79g+EvdPyMLMC7Lwvte65HvH98LMC3zX9IquHdEFt53TXf65Q7QZsy/rjwijHv8c5y57r++KaX1/4LTGzAHAmF5JeOxiZdnS99PPVBxTzMpfPbwz7s4+DR/fPAIzL+iNrY+Pxxk9EnH1cN/ZkeP6pGg+7tYjZZi7zB2c3//1FlRYa1HrcCo6pmvxngUvef7yAfKIPNGjf+mj+PmeLzdj2sfrsUxY0/9xzkGMe3kZqmzq49HWHijGz1vcXdF3F1Zg/cGTKKpQ73APAPd+9Sf6PPprvc9Fi1rwDbjXXHs3pgPcgbC3nH0ncKy0GtZaB/635hBy9p2QO/mLZfLStiLxfmutA7/vUu9nsHhnIc59aZnqff4uhADKdfNiEC9eTCgsq8H/1njGA26ra6b4hZ8u+kRERK3BaNArgm9AmQFvqjXajZmv3RTuGddLTi55MzZRE7ZTBTPgFBamnJEJHYAxvdxzx8/3E+RZTAb8dvfZWLijAMkxFozu7mkK98Wto/Dc/J3yfObhXTsogvIrh2Xgn+N7KY53Xu8UnNc7RVES3DHe3cH91nO6KzKKEUY9bh/TPeAGdqLeabHIfXKC4rarTs/AZ2sPIbt3Cu4Y2x1v/7EP8+qy1u/deLrfDPH4fqmYPak/Pl2d5zMv/IMpw+s9n77psSisC1ZvOrOrohzfbHQHw3dm94QLwM5jZVi59wSSY82KMqX6nPncYr8XCkSXDuooB2VixjvWYlJtcPL3M7sir7gKH6w8IN8mzpoHoGhYN7xrAk5W2hQl2lfMzVFs711BAbg79xdVWPH1hiM+67mbymdrDyG/rAazLu6L9HiL/PprdZUfNXsxMjt4+h78e9FuxEeZfLLWz/6yU/HzvuOVMOh1iDQZcKy0RjOT7z22T3RzPePurnxrFT6+aQRe+HWnovGe6N+L92juX+twwtgCHV+JiIgayhHMAPFAhXBcK14caMwc8FMFA3AKC2ajO9gNVIzFhL8O9m3k0CM5Gs9PGoDB2xcAcDeVMBv1uOXsbjAZdPjnuF6awbM4i1zsvt4+yoTs3slYuKMQ55yW1KDgW+K972OX9EV27xSc0ysJJoMed553GvQ6HW4f0wN90mOx+J5zFJnIkd0SsGqfe/1suwgDhnRujy4JUYoAPCXWk9lOjI7QzOgmtPNsp7bWHnD/u9w/IQuAu3xap3Nn7sf0SsJSr+7xFpPeJ+AqqbJj9X5Pd/qX/zYQJoMe93yx2Sf465XiuQBw+dBOeOHXXABArMWIWIv6n8Jqjcy2uyt5BLYecWdWX7xiIC4f2gkzvtikOVZNTVykCffVPf/eabF4/Mft9exRP5NBB7vD9417ae5xLM1dioyESCy4+xws3lkovwZqxDF6K/eewIRX/6j3sVfvP4HbPl6PGLMR08/t0aDzl0rhe6XE4MrTM/DOH/vkEYWS695d3aBjA8DB4ip0T1LvzUBERBQKtKr2GqO1M+D+iGvAQ/k8mwrTAERBat8uAt/ePhrz/u8sWEwG6HQ6PHhhb9w7Pstv8GwVgkcpEw+4g+Z3bjgdGx45H29cqz7iraEsJgOy+6TI5ei9UmPw+jVD5AZt3ZKi8Y9zeyDabMTCGWfjP9cNk/eVsrsdos345c6z8P6U0/HBlNPx4/Qz5W3ev3E4+neMw6c3jwCgbJAldu0MpBNoZISnY+i/rx6MZfeOwdmnJcn3b3t8gtauAIA7z+uJy4Z0wsUD07Hr6Qvw1MR+uHF0JrJ7p+D9Kafj/L6pANzr9kcKo+5iI01IFi4qRBj1+OLWUQCAyaO7QK8D/jasE7Y/MR79O8bBYtLj+lFdMGW0p5v+OXXnKWWWRamxFqx+8Dx8fstIn/ssJs9rdFbPJJ/7JX8/o6siIy25f0IW1j+cjf2zPWPSRndPVBzX26HiamQ9Mh+3f7JBc5tgSf9OUrVAubVWMe4uWIM7x+P76Wfg72d2VZTlXdTff3OVQNbJ7cpXn5tOHpdccgk6d+4Mi8WCtLQ0XH/99Th6VH15g6SmpgZ33HEHOnTogOjoaEyaNAkFBQUtdMZERG3LGd0TMWlIJzx8kf8licEI5cRyY9eAn2oYgBM1wODO7YPuMj6mlztIGd83Bf07+ZZZJ7SLaLJOl8G4Z1wvbJ41Dj2SYxAnZOnFIK53WizG9krGmF7JioCof6c4/PiPMzG6bt27WGZ+3Uj3+m4xiA5UrMWELh3a4YlL+mJApzi8df1QGPQ6zcDymhGd8fczuypuu25kFzx2SV+8c8MwjO2VjI7xkVh+/1j8b+pI9E7zlK1bTAYkxXie0xvXDMHwunX/fdPjsOahbDw1sT+iIoz48R9nYueTF+D2MT1w6aB0XD08A3dnnyY3vHM4lVn3iYPSsWDG2UiJtWBEtw44o4dyxr0YsHdPaod7vZYvSIZltserVw32ub1/xzh0iDZDp9PhmhGdER9lwuOX9NUsza5Px/hIzZJ+qReCt8RoM569rD/aR5kUTWNyC9yBbrsGXMV/5q/95Ysx7YXfyb+fmem3NM37d0DNKq916+Rr7Nix+OKLL5Cbm4uvv/4ae/fuxeWXX+53n7vvvhs//vgjvvzySyxbtgxHjx7FZZdd1kJnTETUtuj1Orz0t4G4+axuTXbMIZ3b179RKxHngIdBApwl6EQtZXzfVMy/6yz0TA5szXJLEq82fnLzCPyw6SiuHdEl6OO8fs0QPP7jNtx53mnomx6HP+4b26ju9pmJ7fCDkHGPNBl8gssRXRPwzF/7B3S8Tu09WeQHLsjCsZJqeeyZ+JiixGj18zca9Jh92QDFbRP6pcqNvu4d3wtTz+qmqASItSi77k8e5XmNdTod7hjbA4t3FvqskY6PMvmMmgOAjARPaf8zf+2PJy/tp3nleOpZXVFhdSiak3nT64HkWLMcPIseuqg3Lnl9hc/tOTPPhcmgxx1je+Cpn3co7jMZdBjRrQMWq3SonzgoHav2FSNf6GR+Vs9E3HJ2N/RO81zcah/l6bGQ0T4K/TvFYWNeiXxbZocouVz+qtMz5CZ9Wr7bdBQzL+wd9HzWcHL33XfL33fp0gUPPPAAJk6cCLvdDpPJd3JEaWkp3n33XXz66ac499xzAQDvv/8+evfujVWrVmHkSN/qDyIiallXDMuA0wWcnhl6gbj42aU5lr+HGgbgRC1Er9chKzX42dwt7YweiTjDq5N7oE5LicEnN3s+bGck+JZNN4Y7aHKP1Lp/QhYuH9qpweukbvPqCfC/qSNRVGHVnN0eiLG9kvHJzSNwWkqM6oUHcfb7W9cPxblZyT7bvHb1YDw/fyd6psTIa7TbR0UgJdaCnsnRijXm6V6z1KU3sKFd2vsE8f93Xk9Fl/QPppyOG99fq9im2ubweePrkexeptC/Yxw6tItAeU0tHrukL574aRtevGKgXLVx3cgu+HR1HvYJXcx7JMdgdHdPAN4jORp7CiuQ2SEKz04agD2FFfjLa8vrnqMJ/71phM/rYRaqHmIsJvzj3B74+wfr0CslBs9dPgADOsZh3tZjOC0lBmnxnkqGpf8cg4U7CuSLAiO6JuBQcRWOltbgt+0FuGRgus9jka/i4mJ88sknGD16tGrwDQDr16+H3W5Hdna2fFtWVhY6d+6MnJwczQDcarXCavU0AiwrK1PdjoiIGs+gd1fLhSIjA3AiotD09zO64ul5O3BWz0RMGxN4U71AjOreof6N6qHT6fxevEgRxtuNq1uT7i09PhKvXjUYewrL5QA8oV0EDHod5t15Fi5/c6U8b11rycJrVw/Gd5uOoGN8JO78bBMAd/DatYMnu39WzyRcPTwD+aU1WFLX8K7K5kCkcEHjpSsGYuLgjnJg/9vdZ6Om1omO8ZG48vQMxRVri8mAb28/AyXVNtz1+SZszCtBdu9k3Dg6EzV2B87qmYSBGfGotjngdLlgMRkUEwQqrJ7Z3yKxLM1i0uPcrBR8fstIZCREyRcg/jLAE0z/OP1MOFwuZCa2w2VDOskB+MUD02GtdaKwvAaDOsWrPhZ53H///Xj99ddRVVWFkSNH4qefftLcNj8/HxEREYiPj1fcnpKSgvz8fPWdAMyePRuPP/54U50yERGdohQZcLT9CJwBOBGdMqackYkeydEY0iX0yqcCcevZ3bBy7wlcPMB/MzEASI3zZLelDvomg14x+kxLenwkbh/TA06nCxvzSjAww91z4IweHXDfhF7omRwDg14nl9BnPvAzAKDa7sB943th7YFi3HJ2N0waqpwE0EEox1crdY+LMiEuyoTPbhmJ1fuKMbxrAowGPaaf21PeRgzw0+IsyEqNwc78cgzKiFd9LmJnVKnJ4Yhu2hdLxP4KcZEmdIyPxJGSalzUPw3thYA/3DzwwAN47rnn/G6zY8cOZGW5u/Lfe++9uOmmm3Dw4EE8/vjjmDx5Mn766adGTWnwNnPmTMyYMUP+uaysDBkZGU12fCIiOjWwBJ2IKEQZDXqMVSnbPlXER0Xg+zvOCGjbaLMR394+GjqdTtGs7eGLeuPG99fi1rPrb8yi1+vw2CV95Z91dSPovJ2blYzFOwtx9fDO6JkSg42PnN+oQMtsNATUfE+n0+H76Wfgy3WHMUxjTVpjGhMa9O7jO5yusA6+AeCee+7BjTfe6Hebbt08v1OJiYlITEzEaaedht69eyMjIwOrVq3CqFGjfPZLTU2FzWZDSUmJIgteUFCA1FT1Sg8AMJvNMJsb3iOCiIjaBkM4dF4TMAAnIgpRg1U6lo7plYz1D2cryrcb69WrBmHJzkKc3ycFgO88+eZkNhpw3Ujthn/j+6bird/3IU0o3w+GVhO9cJOUlISkpOAnEgCAs667v7heWzR06FCYTCYsWrQIkyZNAgDk5uYiLy9PNWAnIiIS6YUMeEb7pu0fFIp0LlfoJ/rLysoQFxeH0tJSxMaGfhMrIiJqOluPlKJT+0jER4VOFrutvi+tXr0aa9euxZlnnon27dtj7969eOSRR1BQUIBt27bBbDbjyJEjOO+88/DRRx9h+PDhAIBp06Zh3rx5+OCDDxAbG4t//OMfAICVK1cG/Nht9TUlIqL6HSutRo3dia5e02haW3O8NzEDTkREIa1fx7j6N6ImERUVhW+++QazZs1CZWUl0tLSMGHCBDz88MNyubjdbkdubi6qqqrk/V555RXo9XpMmjQJVqsV48ePxxtvvNFaT4OIiE4xaXGR9W/URjADTkREFCS+LzU9vqZERBRqmuO9qeHdbYiIiIiIiIgoYAzAiYiIiIiIiFoAA3AiIiIiIiKiFsAAnIiIiIiIiKgFMAAnIiIiIiIiagEMwImIiIiIiIhaQIMC8Dlz5iAzMxMWiwUjRozAmjVr/G7/5ZdfIisrCxaLBf3798e8efMadLJEREREREREp6qgA/DPP/8cM2bMwKxZs7BhwwYMHDgQ48ePR2Fhoer2K1euxNVXX42bbroJGzduxMSJEzFx4kRs3bq10SdPREREREREdKrQuVwuVzA7jBgxAqeffjpef/11AIDT6URGRgb+8Y9/4IEHHvDZ/sorr0RlZSV++ukn+baRI0di0KBBmDt3rupjWK1WWK1W+eeysjJkZGQ06QB0IiKihiorK0NcXBzfl5oQX1MiIgo1zfHeZAxmY5vNhvXr12PmzJnybXq9HtnZ2cjJyVHdJycnBzNmzFDcNn78eHz33XeajzN79mw8/vjjPreXlZUFc7pERETNQno/CvIaNvkhvZZ8ryciolDRHO/3QQXgRUVFcDgcSElJUdyekpKCnTt3qu6Tn5+vun1+fr7m48ycOVMRtB85cgR9+vRBRkZGMKdLRETUrMrLyxEXF9fap9EmlJeXAwDf64mIKOQ05ft9UAF4SzGbzTCbzfLP0dHROHToEGJiYqDT6Rp1bKmc/dChQyxxawC+fo3D16/x+Bo2Dl+/xpFev7y8POh0OqSnp7f2KbUZ6enpfK8PEXz9Go+vYePw9Wscvn6NI75+MTExKC8vb9L3+6AC8MTERBgMBhQUFChuLygoQGpqquo+qampQW2vRq/Xo1OnTsGcar1iY2P5C9kIfP0ah69f4/E1bBy+fo0TFxfH16+J8b0+9PD1azy+ho3D169x+Po1jvT6NXWlW1Bd0CMiIjB06FAsWrRIvs3pdGLRokUYNWqU6j6jRo1SbA8ACxYs0NyeiIiIiIiIqC0KugR9xowZuOGGGzBs2DAMHz4cr776KiorKzFlyhQAwOTJk9GxY0fMnj0bAHDnnXfinHPOwUsvvYSLLroIn332GdatW4e33nqraZ8JERERERERUQgLOgC/8sorcfz4cTz66KPIz8/HoEGDMH/+fLnRWl5eHvR6T2J99OjR+PTTT/Hwww/jwQcfRM+ePfHdd9+hX79+TfcsgmA2mzFr1izFGnMKHF+/xuHr13h8DRuHr1/j8PU7NfDfqXH4+jUeX8PG4evXOHz9Gqe5X7+g54ATERERERERUfCCWgNORERERERERA3DAJyIiIiIiIioBTAAJyIiIiIiImoBDMCJiIiIiIiIWgADcCIiIiIiIqIWEFYB+Jw5c5CZmQmLxYIRI0ZgzZo1rX1KIeP333/HxRdfjPT0dOh0Onz33XeK+10uFx599FGkpaUhMjIS2dnZ2L17t2Kb4uJiXHvttYiNjUV8fDxuuukmVFRUtOCzaB2zZ8/G6aefjpiYGCQnJ2PixInIzc1VbFNTU4M77rgDHTp0QHR0NCZNmoSCggLFNnl5ebjooosQFRWF5ORk3HvvvaitrW3Jp9Jq3nzzTQwYMACxsbGIjY3FqFGj8Msvv8j38/UL3LPPPgudToe77rpLvo2vn3+PPfYYdDqd4isrK0u+n6/fqYfv9+r4Xt84fL9vHL7XNy2+3wcnpN7rXWHis88+c0VERLjee+8917Zt21xTp051xcfHuwoKClr71ELCvHnzXA899JDrm2++cQFwffvtt4r7n332WVdcXJzru+++c23evNl1ySWXuLp27eqqrq6Wt5kwYYJr4MCBrlWrVrn++OMPV48ePVxXX311Cz+Tljd+/HjX+++/79q6datr06ZNrgsvvNDVuXNnV0VFhbzNbbfd5srIyHAtWrTItW7dOtfIkSNdo0ePlu+vra119evXz5Wdne3auHGja968ea7ExETXzJkzW+MptbgffvjB9fPPP7t27drlys3NdT344IMuk8nk2rp1q8vl4usXqDVr1rgyMzNdAwYMcN15553y7Xz9/Js1a5arb9++rmPHjslfx48fl+/n63dq4fu9Nr7XNw7f7xuH7/VNh+/3wQul9/qwCcCHDx/uuuOOO+SfHQ6HKz093TV79uxWPKvQ5P2m7HQ6Xampqa4XXnhBvq2kpMRlNptd//vf/1wul8u1fft2FwDX2rVr5W1++eUXl06ncx05cqTFzj0UFBYWugC4li1b5nK53K+VyWRyffnll/I2O3bscAFw5eTkuFwu94civV7vys/Pl7d58803XbGxsS6r1dqyTyBEtG/f3vXOO+/w9QtQeXm5q2fPnq4FCxa4zjnnHPkNma9f/WbNmuUaOHCg6n18/U49fL8PDN/rG4/v943H9/rg8f2+YULpvT4sStBtNhvWr1+P7Oxs+Ta9Xo/s7Gzk5OS04pmdGvbv34/8/HzF6xcXF4cRI0bIr19OTg7i4+MxbNgweZvs7Gzo9XqsXr26xc+5NZWWlgIAEhISAADr16+H3W5XvH5ZWVno3Lmz4vXr378/UlJS5G3Gjx+PsrIybNu2rQXPvvU5HA589tlnqKysxP+3d38vTX9xHMdf0vqYIbZitlmhGJUgUdSi8SG6WgTSRXQl4YXURVQKBd5400VX3QXVH5CXEoEEXUTidGCQlG04iSTDsgttVFhGv9v7exGO78rvVzdlP9jzAYOxcxjn8+IDLw/q57iuS37L1NHRoWPHjmXkJHH/Ldfz58+1ZcsWbd++XW1tbZqenpZEfqWGvs8dXZ89+j53dH3u6PvcFUvXe1bhWore27dv9evXr4zAJMnv9+vZs2cFWlXpmJ2dlaRF81sYm52d1ebNmzPGPR6PNm3alJ5TDlKplC5evKhDhw5p9+7dkn5n4ziOvF5vxtw/81ss34WxcpBIJOS6rr5+/arq6mr19fWpublZ8Xic/JbQ29urJ0+e6NGjR3+Ncf8tLRQKqaenR01NTZqZmdHly5d1+PBhjY+Pk1+Joe9zR9dnh77PDV2/MvR97oqp68tiAw7kS0dHh8bHxzU8PFzopZScpqYmxeNxffjwQbdv31Z7e7ui0Wihl1X0Xr9+rQsXLqi/v1/r1q0r9HJKUktLS/r9nj17FAqF1NDQoFu3bqmqqqqAKwNQrOj73ND1uaPvV6aYur4s/gTd5/NpzZo1fz3J7s2bNwoEAgVaVelYyOj/8gsEAkomkxnjP3/+1Pv378sm487OTt29e1eDg4Patm1b+vNAIKDv379rbm4uY/6f+S2W78JYOXAcRzt27FAwGNSVK1e0d+9eXbt2jfyWMDo6qmQyqf3798vj8cjj8Sgajer69evyeDzy+/3klyWv16tdu3ZpcnKS+6/E0Pe5o+uXj77PHV2fO/p+dRWy68tiA+44joLBoAYGBtKfpVIpDQwMyHXdAq6sNDQ2NioQCGTk9/HjR42MjKTzc11Xc3NzGh0dTc+JRCJKpVIKhUJ5X3M+mZk6OzvV19enSCSixsbGjPFgMKi1a9dm5DcxMaHp6emM/BKJRMYPNv39/aqpqVFzc3N+LqTIpFIpffv2jfyWEA6HlUgkFI/H068DBw6ora0t/Z78svPp0ye9ePFCdXV13H8lhr7PHV2/NPp+9dH1y0ffr66Cdn22T5ArVb29vVZZWWk9PT329OlTO3PmjHm93own2ZWz+fl5i8ViFovFTJJdvXrVYrGYvXr1ysx+H03i9Xrtzp07NjY2ZsePH1/0aJJ9+/bZyMiIDQ8P286dO8viaJJz587Zhg0bbGhoKONog8+fP6fnnD171urr6y0Sidjjx4/NdV1zXTc9vnC0wdGjRy0ej9u9e/estra2LI6FMDPr7u62aDRqU1NTNjY2Zt3d3VZRUWH37983M/LL1r+fimpGfkvp6uqyoaEhm5qasgcPHtiRI0fM5/NZMpk0M/IrNfT9f6PrV4a+Xxm6fvXR98tXTF1fNhtwM7MbN25YfX29OY5jBw8etIcPHxZ6SUVjcHDQJP31am9vN7Pfx5NcunTJ/H6/VVZWWjgctomJiYzvePfunZ08edKqq6utpqbGTp06ZfPz8wW4mvxaLDdJdvPmzfScL1++2Pnz523jxo22fv16O3HihM3MzGR8z8uXL62lpcWqqqrM5/NZV1eX/fjxI89XUxinT5+2hoYGcxzHamtrLRwOpwvZjPyy9Wchk9//a21ttbq6OnMcx7Zu3Wqtra02OTmZHie/0kPfL46uXxn6fmXo+tVH3y9fMXV9hZlZdr8zBwAAAAAA2SqL/wEHAAAAAKDQ2IADAAAAAJAHbMABAAAAAMgDNuAAAAAAAOQBG3AAAAAAAPKADTgAAAAAAHnABhwAAAAAgDxgAw4AAAAAQB6wAQcAAAAAIA/YgAMAAAAAkAdswAEAAAAAyIN/AGnGN4myP6l0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(1, 2, figsize=(12, 4))\n", + "axs[0].plot(losses)\n", + "axs[1].plot(np.log(losses))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7woNwcna3gkU" + }, + "source": [ + "As an alternative to running the training code above, you can use the model from the pipeline like so:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IN21Roo5fVnB" + }, + "outputs": [], + "source": [ + "# Uncomment to instead load the model I trained earlier:\n", + "# model = butterfly_pipeline.unet" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qVdGxVJOtBPb" + }, + "source": [ + "## Step 6: Generate Images\n", + "\n", + "How do we get images with this model?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LTBbByMl7ri3" + }, + "source": [ + "### Option 1: Creating a pipeline:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "p3mJYitMtDeB" + }, + "outputs": [], + "source": [ + "from diffusers import DDPMPipeline\n", + "\n", + "image_pipe = DDPMPipeline(unet=model, scheduler=noise_scheduler)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "8a4c2c2e638d4d1e9dac148d014ab5e5", + "0139e5a0e8ab4c0687daa4ea87e5f496", + "6c09a1bb320348659689d40ae2cd44ef", + "5d443d805c4d405d9ddea69d06e29c64", + "e33c2a591703427c9ad7a52098fa5129", + "2fe502a96cf94c5d91277ed057e0bbb9", + "947c7e5180e647839d8949793fcc6767", + "2b89dc53965e43088fe831f5c283d25c", + "269bcc0cbf8e43d495cc20396ee85262", + "c9fb67b6c9d546059aae7875853191ab", + "731f299d38b2482dab9ef543aac76b44" + ] + }, + "id": "Yl_dSb7OgHet", + "outputId": "8ba86b5f-4fe5-48bb-c189-42a00bc18dd0" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bc2ef0816a264fb4807c35d31f45b8e7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1000 [00:00" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipeline_output = image_pipe()\n", + "pipeline_output.images[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UHvu25neFJHh" + }, + "source": [ + "We can save a pipeline to a local folder like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "a8C0_2UVhiWb" + }, + "outputs": [], + "source": [ + "image_pipe.save_pretrained(\"my_pipeline\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHgonGi3FN4J" + }, + "source": [ + "Inspecting the folder contents:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "F5hcwUSJhsnv", + "outputId": "cacae285-6982-4716-989e-77e8322f06ae" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "model_index.json scheduler unet\n" + ] + } + ], + "source": [ + "!ls my_pipeline/" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vypV6Joh2vE7" + }, + "source": [ + "The `scheduler` and `unet` subfolders contain everything needed to re-create those components. For example, inside the `unet` folder you'll find the model weights (`diffusion_pytorch_model.bin`) alongside a config file which specifies the UNet architecture. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dbFq6QXJFUdD", + "outputId": "74064f89-c598-4fe2-beae-a675fde49147" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "config.json diffusion_pytorch_model.bin\n" + ] + } + ], + "source": [ + "!ls my_pipeline/unet/" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L2_tiRgS7-qh" + }, + "source": [ + "Together, these files contain everything needed to recreate the pipeline. You can manually upload them to the hub to share the pipeline with others, or check out the code to do this via the API in the next section." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wTWtm_4HFi5U" + }, + "source": [ + "### Option 2: Writing a Sampling Loop\n", + "\n", + "If you inspect the forward method of the pipeline you'll be able to see what is happening when we run `image_pipe()`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "m-WTv-a5bBOB" + }, + "outputs": [], + "source": [ + "# ??image_pipe.forward" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bj3tuUD6bMG8" + }, + "source": [ + "We begin with random noise, and run through the scheduler timesteps from most to least noisy, removing a small amount of noise each step based on the model prediction:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 + }, + "id": "cAFFaVJ6tFbk", + "outputId": "c637da82-1db5-4275-9a98-dfe13f5bfded" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAAAkCAIAAADKASJwAABQTUlEQVR4nO38589vWZbfh+188vnl9ORwc657b1Xdit1VHaarJ8+QE0SKERIskoYJWIJhW/YLG4YMGVACZFKCaErUkM0Jze7pqe6pzpXjzTk+OfxyOvns5Bf3uRLqD9C7Xm/Oyw/O2fu71tprrX0A+JX9yn5lv7Jf2a/sf2uDTx8ffu9//LfvPESV8atnXjt+8o2F43UHZgqIcKK04eUSIAymk6kBfGACC4NUAI2EQXGe51ALnjDoEKlSKYGtQS5VkMdJZ/ezDz8oVf2TrcUL33wTAPBX7U0w2hGkvrraSgEocS6oowHUKoMIZ0BaWRZogE1TJkIzpSRPBKoaJMtEroFjMx5wiaXGuQ5IwaFBEHx497pfsCvVhabhvdyaBQAoPgQJSzIFNTQtALgWcY6YSGlNwQjkMYVEEVeBFAEMsNSJQIhAkWQAaA0JkQASpqQUuYJUJVm48VBgVaixKLbq6DC5UAcAXOtv+UoC5GIDKoKwYlLkCkgTGwKgNJeWzWTGQ5EZjBFIgyDwPCdKE4uqIE6LlqE0nORYRSkXUW9rZ36x7BRcz69mCjg5rBeLAIDd925f6RpgPCSzHpDcSVl9eRbwWLquzxkwpMUIMeA0jhiFoUhHY+EYVdfISBZlrEQYGU1HAOJZIgNg5gJxkpVsAThOEUFjY/kFAwBwd7Dvg8kk06Mg1+MdIAixQbk1b7p1iigxLay5VDnWmmvJoNGd7GuNGEOO7/OYSyUBxhvdtujt2yYcjtLdzQezPrZNj9bPrBy+NOthAMD0T25ugRGxI68xZxXhYHOSRT3Hq9jNKo95phKnuqSk3NncSqa9PNzbb09XFw8tnTlmmRXHMASmnEtIkr21YYwiKqKrH13PB49ta/7s82+A2pnTrxkAgKtf3L/1+V988tG7e53Am5k7sVyvVEpH5l88cfxYqeZwjbHtS2BxmGOYQwUYNhRDSIucK4PhHAAEGBMaAbh/b7Pf/vzmxoe/+ODj3lp07Ny51/+93/2tV/8QAECeyuZ7f/qdG+vDarXVdR/vXLlnzi+tnDl96vxxgIDMM6oNCIFh+yKWWMBMAYSQxEQpAIRBMFMGBASQnAKgCGGhAttrd3/6/e++/8ufz7bcw6dPPaX0777/03d+0u70X3vj199869vY82yYE4mJYXLNTakURCIKR72ua5RN0wiijEg5Ng0MqcmQCBQEyNImTq0Ii73p6KOfvv3Ld34aKd6ozZz71mtPKUnOIJcKESi10oTzNOk+SvfuC6fESgvSrTQKtkAICSgBhAIjRDSAGRQqSxVGSGJKqFCAQVtT1d7cG+zdi9JRfrPt2fP0bP6UQqJknHNCdM2syhRDqnmeY2wAkxBFbZQDhaLpWEo8kOPhRh8ZwK2YjLgZwwyADAGCFIzk9vaTH373zx7cvPLS88deef3V1sr5QqWWQfGU0ssZ1Xw/Hu798t7de9eTMZ9dKJ65+OLcyRMF13JlgVNgSQixN83BaHew3R8uNgFHDnFcyDlME5YbOYFhsQCyLOAB1YYAroBwOhoUHf6UouGEp3zzxvUweTi5fyPpDbe2w8Xzr53+ytdbh04UWAUCC2sqVKIVTrmOuuNekswvN4xYQq5llu+213/03X/d2bxfK5Sl5A8fPspzbih47tKbv/n3rKeUa72PPv7sMuSpXalAbLf3bvNxXF89furUWeH7jaorid9e2/jJT/7dtL+v02lnmLVq5Te+9buXvv0bXAAsJIByuNvf2dm8fePjVAXXvrgKg9BAhQf3b1184+WnlHf+6r+594u3O+1BeyD5nc/3HHulXvrh8L8v1Ep//z/8Ty5+4/ekgLYNEEeE2VoiQIABAFBIa641MSDCEgAEd9fuX/vR/zvr3t5u9yb3pkkmP/veYy8/0MvBY4RAsVT+2lfOL5bK71y9euO9D7vJ+NKlV//w7/+D5dUF18CZIkAJoQXGBkAQEmABACDQlKcSKw2QgJiiTMPd7d2Pr/zy2mefBuOOpmR9bzwdf3oQ0376/vU7D5Oc9N/53s7mw7PPv3T8yNl6sWRiX2ciz9Uk6K1t3phm4LmzLwiJiOSQqgioAqEQggwrooDKE8XQ7u7mf/5f/peP771fdwrM8K7du9oG4VOKCkdSE5AjjdG0t7f/6HI+uWcKFYdwbwJnzrzEzr7gFKRQKAl6ANm2xyhARIlEpUJohJRGJIkTzzSDnU5n7ROZBUU7uv9wbUdtZwF+SuFx/+4Xn+c8u/DiW5X5pel0ovKMmlRTgaXKM9npbbU397gYizRlCKlhnkf12mw944pDM5dxPhUAqc31+8Phbr1V3eutvf1vHx0+++T13/lt228crMtUWyyM451H63cSnuUU/ezdq58+Gr746v6RlUOnzq+YocddGwrNSN5qtWLNcy03xuuHjAaQtOAXtzr3geVK26UZc2O6PX38xd5WtTBTa7Rcyz2QTRCk+dgA28H4ulMeCUUG3SnsXk3eH6y0z54+/1axMgNMpNIMQZxm4PHdK49uXvb+7j+xKoxH8daDG5c/+2Tc7lKK93sb3d39SZpAgqKxIE8+X71/40A2l3/54MbniUJagBSQkmcGcXJ3e/OTzy9XZ5oXLj1/6lT06acfPrh2A8Co5JZWllpQdN//yZ8Um/WVYyuAeuNx/8P3fta9v1ar1bYfbsEc5dhRKv/k6if9af8p5fGtzzLMiwWnWMbjiZBZ1N7u7idqZ9r/z/5v/+G/P37yjd/535tWWeYcAZMwADMFKMpFDjWnQgFkAqFuXH3v3f/673qwVy2YQQ9TZpEcQhNtrd35kmwK9dVh54vHD7auyr3tSRhAFSvxzo9/sLH++H/3f/1/nD9xDFPBFFUcSKIQgyqT0qJYA6Ug1knRdmIF+r3JX/31X23d+mwy5o87+4YNciATLTJ1kAr++PInSTwMpUMiZ3f7nTsbmy+c3/76m28sGSsQ4ozKmNFPb93zHXzplUvEAtubG+Mk0co4eexsnMcMolRiguHO3oO33/7TJ49vMFIKZCxjPszzfGf0lCIn6ebOdtDft6ws7t6cKUijaBul48MR6V/9hPD9yahN7SMEYQkYQRAKICEQqWbY5smYWDDs7qk8Garo87/8LiBhPM4rDR6PA2Ja25vvPaV8cuWDcH8PgPwHb/+r3/6NPyZeKZPSwIJwIvL04fbD2zfvQM19QxYrM5ZNwn4SpzKIILMNjnmyPyYIGQY7dOxUwhPT8R7c+mjr8hf02qdHzp2rVZynFJtkW2HIBabSrlTk9uNJAl2xH7bXQ9m5kXT2rN/8dbM/Ni3TxcVJLvKAyETv3d8ZFEeNhZrphDev3R9t3b34+m8UZys2M9//9Mn7P3370Gz1m3/rD0SYPqUwnmGSMizGKZoMEyikoRSRw+kY3b3Ng9y8+PKbpVolV9pzENFZGiXFiufqPNVwEnQf3f0wj3e7QXswHCM1nvLEdwCmmGCDp/k03n5KubPW54rlcagkyUCeOjgTPIv4NOxvdcdm0SkZKB+NPcp67YEokmmaEcF3R9O/fPvPT2xfOnfu4vf/7PtXPnjf9+2zDuwE8eb6fsp1yUE4UwgkTykP+/1abhCcI6iKvsoDs2hJLwkHAhjY+el3/oej537NKrykdIYUAxwCJKHWSTJmGhGTaCi27n56+9/+X/R0cOT84uGL59vvPN6810FB36rYgsovyebw8aX2xqN3P36/cfQUtErhWgypWWjQje2tf/af/2f/6J/+H1fmZyqlJvUMmQuZSdsmIANCimg6KZVLWZh3x/G/+pf/8rOPPjh7dJV4QA6MbrtnaA6AkurAQ+N+XzEPQJYoFAO98WStXq188C5nv/XHNcvDSIg08QvFJQPEQRI96PKEbzy4Xlk8FiaB75YkzwnINqeDjz75eSYnh58/dvvzL0CKANZJmurwINr0JsHa3Q+H7e1ThxtFOGVpbvkFUPBqlQpFJy9fvv3wyeArv11ozi3a0mKGpXje3muXCg5kcNLb17aIe7ul+sxge2OuVWi35d6wv72ZeR6O+/srs+WnlM7mmu8XtDRhFvz1O3/18te/Xa00KaUSgmE0vnP53XqxsXLiwnD7cZpFAVe9/bXJaGMpOdY4dtxjJvTcPEksUlIqXq0u2rNlOd6gYV52y3du3LLtzlPKmNkildu9vfc/+WUcTpuHVmeqLZ4ba2tb4Yz//R99N7T1G8fPmeW6WYkcqUgJKdtFMzNXP3rvjfpr967d//knV0uqf+Xhf/PcpZdgaDzu75ycWU1j+s53f3DqxRfBQbjJCbZnVmaAGA9K6Oonj4gFoTKDkAM59Se9Jw8fH7F810RpDNtbj6g9nu6bZtHZ3lj/i3/5/42Gdz0bbm1EpaKTqyLHOTBtz4SUIWaBoNs9WH2UMmpOZSghsR2UpCJXjrRShhjG9vZ6r93cchkgYlqZqeJchfmEx7FfbsoU/uztH/zZn3xnf2vHK1jdzvbe9v44h0nMTUbjJG01XG++9pRy2lua5l0HuqPe/qQXJyKfKZsGc4L+tFCOeRA9uv9ea2XB9YoIA0IgQESJnEDbwkAza7Lz4Oo7/1xNHx49Wu2MsFqTx848/3Dnr3XiZTIh+suyKTurhvglV1rntFYxdko0T/qSG5lyR/vBF59/PBwsX7zwWrlYkEABCcfjtEQZB9qU1FAwhvLq5c9ubdx061X/7Eq6uVepsTSa5jEMY3F0obkOAABgaPsVu8gSaFZL4xGhFt1pD9fWdqTZ+L1f+zXLooDil776FY+hBDFgCK/QxJvGsNfuVjMNIVUoSvUP336bkPbZY6/tv/vpZBozajFsGjhuLrkbAAAAglGnUWaudnfXnszVZNrNa9a4aA9BiQnLfe7ll26v9aNJwhc4xQxqnSoQjsblUimZ9JJRBwZDyMgkHUvqOLNHfXOtOB7uRZnKMmZarLoKwCcAAJUn47HwLL/ilzYfb21t3Ct4VaUVgLC/256MRtVaExKvuHh2MliPx8PKTFPhSMiku7XOy1Wh0mDcJo2sUF+qeMvSNsyzb5x64a04Hn3xkz/vbj44SAXbW59//PMQqb/1j//x5t2be3spYfb2g62tYDrcprE0L7/78YUjx6KNbYbmTeZmqlhtmoeNI3/2z//FLx6sH5uv+jZc248erz9+79MHrl947rllaReD7u6jzx+FwH9KMdyC6VJDULggnClXg2hrv7vftreCvNakEy5321tOY3FurkZgcu/ep8OdfVJoXP3i/Y1H9/d3bi/U8Wic57GgDbVy7kTQYVaRdPdGaZAZ2JutrjylnGgu3QpuGrabpDlElEGkmAYKWr5jOU6aZrfvbV84XVtcaWQQZ7mlZY4rBi1WgekkEzNW40rR7SdThfEoSCeRcF0KeUAw2e3sHQ8PzjZumYkeN2SCgKBG4lWBW2AAC64J0MCwye7VD/eOnmvMnKDzrtYAasFzSXQuTVsk/Zu/+JN8+2oUuaNMR4PhNo+d6k6WRDYe2Vbr0MIiAHf+V9lYdQc0vFVw5PkXnn9859FonDJkci61jlPi7T5Zb5XKOzvbVdcFikKGKVKZhlk+oZYbKv1kZ//Dn/2ou9u3DPvx7ceN2YrRjxjjcQJMqGutg0zdoCqPY4+5aRpMwkEcW9s7Q+YJ45c/LtnW4Ya/fGJROw3PKSQiU7a9du/OzQ9/6SwdJqX5cBQqS23cuvOLX7x/9tUTR6qV2sKKWzucjfZU1ncsz8fFp5R83ObTftjvQKgUWsz0fpY73UHsG2GhOYtQ69fOVHrtqQ5TatiQSxGP0skoT0vjfmdmxkp5bW/zlk4fJKPpKELlglcplUaj6SQmhZJSZuUpRTBntLeTGUNRbYzTweNrHyzOH3I9PxEJF6JUqJeLc16pzJOk7C8Ne4VpMiw2K1HYj8dtEXNoEg5QnIo5xwaIAaytxepoHD28dpPHcWPhHAB/DgC4t767uf6o0ZqrwNXAiHrkfjDdmSTjMIjGCkKTDfcn99b3m/7itN3benJn4Whtfu7U9ubWS9/+o5/91ffe/fkNVsLJ4HEWKI2cUSB+eeXhCxePzsywweURVfog2lglw9QyJ9A/nHTWp+GYU2/uuUNGP0wy/8yp5y1CQRrLOEcUlx1nOxfMw7c//ULyjVpZFBeWUzM5ptTZC8uHzpwtmK9evfGZ6F4jVGLNN3sHpw4530Q79/NEOK7j+URmkvDMppbiZsmr1WaswXC8tdVOc1SoNpPx1LJAnsI4GfZ39oUmtmtxwpDKqckUgjjqJ0iJDMBQp5AWbPaUsnr67L33NvNxWgaiNssA0sszfpJ2iID9lCbTtLfzaOvyO/h5sz4zixnLeY61ZIhOxr2Pf/w/3P3Zn5arok3F/lbU7ybL1kaLuNCGFBQJ18fmnwPgR/+rbDbHbUW9o6dPE4JxuSi4zIFWOKfIpkh1x+Fet22UZ+bKLVQw68yFECdAJzkHhhZJ+N6Pf7q1ueuXzYTnw2n/0dqTzW7HIomNRXmmeHRl9cATACszzUmaaUARphhrhWU+SPJmuHbvk0eXNxaevHjs3Atzh59zLJ2GfGt7Ky/NpoCktx4P6lm3v/PeL3+hcNRu9/iUrjQPF8wP9zLJMbCgLFsHm2DY2+dRdxzlJb/aj1S5uAjN6uaTfau/azh1szxYKlysLNS0gEBrCZQK80a9iOQonO6wJO0P9/fX1wqFQrNZnqN1zaxGffXm4w2ZZ1IVDavwlLLR3Tdivnzk+PzCglGu3v3i+i9+9tPXv8GIYz54fNUvVSqtFQYUQCScQISRCZ0Ux55vGqY72Nx0W/MLS0s6zqPBsFDw0yDc3715/fbl9Yd3g1GyuHjuKeXJ4yt5CJPM2urc/fH7P4pxiHLYyWLItAlEkrQv397d/mf56YsvuLmpiWt77mPrydaV3Uu/8/xA7Nz6/9yPg9wiQgMCVI4wI5mRxlTTgUUx8Q5Og5brMpAjy9V1svXTzsb2k2rj0rkLr6PCPOaYunUMwf5eJ4yHhuMGeV6tz8+cOXFt2B+Ho9PHWxz7Q6UOnZg5fuT07Nx8wcK3rn0CNCcezFNIKXpKqRUr1xTwKwZOuU21aYBcOJnA2qrM2A6ynWy/v9tLk1A0V+u5SHEqaxU71RbIeC8aSSRmFsuFajOTslJi9x4Gj+5cVYyMc1Ur0VAe1B73upNpBoAgiqND1CzMkkZBZEXFTNMe6z1hNqrWeLQ17OwkuaSWlpGyC4V4tH3jJ/9m/4PvIBWnwsC4KVQnVGKSSzTIJiMWpTnDxvJXzn8pSUNJBGIwEZP2IDA84bs04sA0meRcEh3q8b2Hd8+cPU8dC0EaJoKDCHBg20Wixb17d25du7Z48uhue7DTvh8DczgcQcSFzjFmlsUqz6INsLWdB5lbJKVS3BN5biASSczHKt2cDhXK1t//eQbJwuGjSlo8kwWvaKJmdXnJ5q5tG7dv74/k2LLtRrVJHNOQslJp7j7aADxOMQ/1gb9ZnD/6xUfrSRBVZ+oII2mapu8YTLTb4ebu5urCZpzwpbOv+lZBKIGJNiyzVKj0J13bhjsP72mVBOPcL/o5pCrrV+cvuX7rhb3dT3/8yyRVTnBAMSCOw3iy16V8nMo8Bdlnn34AGV6YbYAELF54vtkqJVGMUZ5kvaJbUQkB0ZY/V9m8t5FlARn5xvyCbZYggYkMntz79Nb1j4JcRRkrlCr15eWnlF43iKXqDAd7nYgrTJSdwsx33FGUIkptbGVRtr8rHGsDSe/Qc6ev3L3dTmaclq+68Rsnn+v8/v67P3q7Roo7jhbTlIooSybDG7l/uPri199Ymlk8SAUF0AimSJg0rRXtNWt2Aja4litzx6WUSBuj0Z5pcsIVSnWR1udOzKcpRSQ8vLx6/tJ5BSsnzlKj7CntQSbjMF67t9/vxvVWsdhovfbyq08plBCsgWWwOEh0rhWRbsE5vnr69CtvDTd6N2/dQoJkmUYO0zpfaNUGe0+qhdbuMInihIcTxEyRspOLc8woubPFV19u/o/fc3bv3VJODBRI0oPyBu6NygbPTJ4BfHjeOX7e1yR5sME0l7Wy8kulCSDTSdprP+LjnrBsrEE6zUb9zfU77xXK2DDIKLUNJGcP1aHr5Hk6Hic4FyqTzly12jz9Jdk4tHHo6KkYOMPNJ5OdQbFWKSmap8OMUd8wmYRRNMZKYYo8x0gzkWY5iQFA4N7DzX/13f/57pM1p9fOLAqthpJBxfMHwxQom5rmYnOhwOynFN8tp+MEcBh2RlIyBozE1YCiTGJsmcvFpZu9h3/1k8uL5185c+hEbzANusFgc+PEmUOtxVq72+n19kkarywdWZw5ThIosK61CuWiNQztKBNRJ35KKTT90Xgw7Y5KC/Dw8UP12armycIJb4lM5x7ua9G/f+OH+/3g67/57yGtc55lUEKJRT4Vk34mOmlqusVqroikfmd/w22FrOIce/7SnRu3YTa0jxx0IU7Mnvh494M4jwZ9ncSpFsj2zbs3r0z7c425VdcmQmkpRTKa2E65MrPArO4nH19p5DvxaGSwwurRGZnkw3DCKXx888aTu9cQA708Gw567nzryIk3nlLag77geWfjUa6scZgXqsVwnBIEPGobNkphRJUzSXtJ4AKaD4YPK6J2ff3y2dded4+zhw/bZ1YWz/2n/6fH1z8Zf/IFqteydjdLoCaWJY25SqUqD+IASUJJMj4ebu7dgp756hun9rvSw5QRIREVeUY0L7oFwzVKxWLWrdo+6cVxnI/OP7dcLR1z3bJmbDScDLP9quso3zp+9Mhk1FlenFuePT7bWnpKmZ9Z8ViV845nZEhBnZsqElXbRzCcO9SSQCjBh1OsKDGpLrlOBGKajowc5MHYIAXL8veD7Pq9B4169bh/6tXXLxSqje//yf9vb/tRKGPTOCgJzC9bPW6Moj7yQMQRK5R5HDnmeKaUB7woRwDDcbVaAfGTJxvXlpnl+F7U7Yw2d1geDIadQq3iMQACHg3ySt2Np3LUHUACDKpOnDhWm139kmxqTlnVpm0JRF7uTPuOaUMG0gHOpjlnkUDQteyBypGIETGm/d40STyn+PnNex9f+el+dwpLJE84h+bcUkP1pxOWpoN+yXcbjUq1Xgqf1R9OHjn8yQf3oKOS4UQoxyg6lCNpA2rYc3ONaqNRi9TerUcf/Pi9uXJlfe/Rzz7/hTSDW198vLu4fOveo73921HOw86Q83aoi5ev3EnDaHVhLnk4StJcuwdxwPGay0fP3cs3oUkc22NuAQgGYAEr7/j5hdHO+u7eT3bufRK98fuFEkU5dyysda6kaO9vTYaxV21YDrLKvmMXA9sdjboJecIgtl07prrWOv6UUlo6Ur/3vg0w1CgFeX8cSKBUmqokslxfpIFKWJ4GUkHbrmpIiOWZDtt9eI+Dfha0+5WKdMrtnfbuVvf2lS+KBfvoc+dW/MIDcq1Yavol72B5GMgSHudISuJaWkwjJTSwiYUMx6cAwl6aMGb0ht08hTEai+p8FEbN3Tsbe/ZEdr55cWkwqbReqJuW+Wirby9Xkz2eM9rZeiQ99PJzbz2lZMOBtsL9ux98fvv6rUdbVtIuOK4CzVJtkTmL2KB2oQwIIrnAmFZnV/bH45nF+ZPzFwrujMBurojmIkuH3QeXuzwtlY+aZqFQLHd3d1SCv6oO0qcx40AjNcokQWGauQ7DitZmWzYrVBozyER7648BnYuDEcZg2HkipNnZ72mjbDNzKjVkdKVc6/SHBNVPnz/vFeHsnFdr1sadx2F/Wm4cNDkWFk5t3f/Ea/ieMhSLR+Ok6ETzM+RRIlp+RCr+3d1YhTutkubjte32aiGagGCYpHvYMayoMQ7UOBhbpqckGXfTYXfAlSiUbFOTYtlOYPjlJM0r9G5MEsCvX3nYHq0rCWySQ54orYI01imo1+ZRFMUZ5MPJ1qM1xyxFcvrD7//raRpQJReXThyZXQyzfGN7d6JzEgc405aLwjRpD6NjPHpKOXPpq5sb/Uf7azkXSoSuO28WS9koEIw/XOtCYRScRsMddbbX3//kytXLl/d6+0KP03TQHXf2B+MoEkqjiQqwSXK5L2RfSZ6ABGDOTET5gWygDQzqVhpFx3Ah1jKPqIG01hIQbnisOV9oHoqHg7VbHx+79DJMI0KJIPFg6yHNOMW2Xy57xQpUJJcKaqBUopNdpb2VpWYEjNr8yaeU2YX6drmeZ7FySDTMFCVxOAUy7k7Gy3nIZBxMVac9OnzsJKMm0poy2KrW7204HEWZCKxSXUE67Q8//ewjbGpL493d7u52Px6nR1bdZ40uUMIsSQKVBrHiJjUSoeNceD71TaZ4ToAhRIiJKSQHBnKQkY0GBq4E8YCa+Tde/RrfH015x6yQk2feePOrpVvXf3p58HOWxl0dP3y0trl3sC7be/d6a5/c+Ozj9ijsD5Xlkf403fjx2/1R8nt/8E/9sjPhGAMAcQqhcis1T2oGSOvQajbuswWqJLh/5/pHH36A0x2eZW4h2W33xnFGQyFpFKPsKaVsWsuLxQcTMhyPKdE4V1RmCY+LOImysUGiatkYiqji+iAKk1CkQQIFFHlsYZHmMhn1WwtL08nk0ldfXT52ZKIUI/zIiXLcteO8fGTx4NQBSy4l0CWQICbENMsnWUkDbS3My3xCaabqthOjFObdeO0+gkui7hX8YrVkrIcYujUlhmnX6IySbiefCoAVp5TrHAPEwiTR4eRLsqm2mvOnWp3hrixPorVRmEinwqDKpIYqyQ1mjTvd2w936pX71Zm5zt5+qcbvffLFfm8i1ERICvqdbRlKag/DPaw1AMLxCbVYlshSYXa+9dxTysXzL2/e2dzuRcTocCS5jmbLtdhiIFJRou5ev2NXytvTXvpwZ2fQXd96DADTOAwKDnF1GExlHgBYXDh02iouZwgm4PbG1oMiyg2fGIAtnFm49fSVMqjiPdMi84dOODVXiJQpobUglgc1ZLXW2a/+xuLexpOt7a0Hn7l+3bBE+96VtfWHTd/27BlKWRYjnkZ5MgUk92yjvrwgMz7fRgG0nx2gQH3mmF1tdG8/Fjjcn0yhkIILD2EDgbTfe/zo+qGjx6hKDMsgxOZ5DiCuLRxxiuanv/ze+ubN2s7WaDf56c9+2QuSYs0aBFnEe2k4KqjMsWu2PChvrMwf7XY/UpJGaTbKuIcJhRaXKoynXNEgDKFJDcPSYV6abdpAGgRFo+3dm5NbngdPZ1eu3VssV/3lpdUXn7ND8e5/9dFGe1cnQZ5o5npcDZ9SZDbceHCjM5l0BuloGDRdu9osrz9OPvzJ972C+63f+8fEciXAGGcaKIWJaxIuFWaef3yRFWsPr37+s5+++8mnN2x74Ber1uh+HItqwbELXr3e0s/2mOkw1yQijxjFgNAwxw3bnkainEyjeGBDWHCmRZpKYgXDYNzrTxOOc6xZJhEBEjZarWOHZ3c22w7es+ghFPEE5UdLzXbZ9Qvzjdm5p5TVlQufAS+MeDAeeOag5tWYYYYqTKepZeQa02WlAmwVzIiycNS5Eg2gXD4J+o8aK2WOcGFix4NhlAX1ulNCpLO/yzUOJ6MMWVkCLOJ/STaeX3/+6Ksf3Ln8ynlcMFq3r92AOZeaI4qiMM1VpBLzycMb6w+uz9Tm/ap/qohvPnmYiEGv2zedomYUTcRguj4YRDZllbIZEJglIbUrru8Wn/W8oVFZWlzSSGVZBBAGPB0O02bNHWbjJM6m4QROB6NRVzHS7a7LMGSGkUvRmyaONHkqAHBdswBMolFhf79v2XVm0kxllAGaFw6vHjvY0dS0nHKw/1jBRIKCZXtACQlGiIcaOlIJTJFdbs3bzuO1+0nn40bVAmGvbnu25woBhIIAY2D4Jb8w6eg8inUyisfBcNg3GyWHHXyxZs195au/0en+aZAFJrGxbykKVRBik0U8vXr5slMoz66eSDPgYs0o0QQZue21jpfK13ejW53dIIk63KSEQAgRlywYTxlWE04as0cM8+A02Dja1Le9PEkVRphHHFONQZaZGhPFc5MaUCOKAGQWGQ46CMYks0uV9t7uO7+cXr/5xcbd9umzr7xRXuh9/vOffvzF9ZvXa43yRBoJCJ5bmKux2aeUEOvuYGRYJqQJK9BkikGZ+gWAqPfj7/2lVVx59Zu/K2CCIYKIYIiAAS1kVOpNnqaD/ujq5Sudabiw0IgiLHISahEEsZbgcKt89NRFs9B8StGTdSQDLQVECEstFM+F4WB/3AmjfAQA29saT6K80GpyOdjpTiFlGmiZKIQSmAPiQq9Zn5upGbbMusNeHBZNshutL88veYee8+sHFG/p2NELz33xix9CG4epc+/JZL4VmCapFEE8nAxH/lzTKlvFNIuAnd95cEvxdKaaD3fW3QqGWFvEgXA4mgxmmoshV0GW5nFuM5WOuGNXn5XrnsnGxWk75WKS1YvzDa/Lzp3iaTYa9zc3dgwMiIMNIx+Fk7jbu/ng0aXnDvf2H7d39+J0muV5LIZJLnGzWa6XuJCQ81QhS1Ou4yiOZpsr5eKBRj0UvHTx0k9+8f5IxiW/VJ8v5KlZst31Ow8Gk6niU1NDoqFyYJ6mxEEcAiAwkkpkQufINXAmhrcuv7/zaK3QWGwSMe87giLf5M3W6oWlg/QJO9bCC2/2I0ykToK+NqlleyrHEGRCxDyH0PCoCY1Ub9+7s3bz3vz87JmjM65nZXGeapQnoef7mNnMKxppwmW/196TOlSGIm6Fcwqefbrm0gnbJpNIasBX5hY6KAu5wBZSSm7vrr/zp//m1OvfuPTa7xiGjw1NCRLUTIfjT35xIx6T/mjKo1ikseIwzHAYBbZtEsIKJb82V0fgINoslFcalbnubjwKo5wwkCuV5jFOfddVUDBo8UxqjDHIheNhKTlB7f01KXMYZGFEbMPc3rr19nduPNoio/FIADgeZxjEzEapUJX6QYVz7d660s4kGCioqIF7o/yIWWkZqrc71Rl89yc/XDp6YXGxiSCi2FAaEmgBwSkkMpPbu3enYSebhnES2sQAGGnEfJs3ymj12LEzr37bRwdFlPaDkcIS21SnKaHEgaxQMGMVwkDvDIeu2yyvXBjee7i/3b33eJ9oBDRkBJkGEpwMwino7p2fTN78+tcpH25vbBQMPknMXOJjL38Fug3Pf7aTbefit//ek0dPkmBzAnE/gyVujsf9WQ9qZWkeDoNiywNILyWTHGYxQ2r77oNuZ92e2DOVcjpNGn6G5itWsZQiKPPs/qMtpMTs4cPPv/HrQplfko1w7HK1pJC58Xgzy3V9pjpa39sbJ0nGNWUgxzrTzEKZYxlg+mBtI4tyyAhUIQQSQ+aY1GGmDQ3bkePdvoUmM805q1B99Y2vnLv4Nd9TB2GAGEbL+qM/+sPmnVNEJ5PB9NH47rXb20ESKx0DzKW2OIAg5kBygCSQGSAWxMo1iFMrFCgYahjkYLc/jWW7L2JpTnA68Tj9w1//zdm5paeUFNDW0srJC+Pe+iOARn6toSvzPB0rlhGqIbSUNhD0uztP0lFALGYhoqFlWpQAIxlMTNPBOlMc5xEsuNhhjlmwe+2kuzOYP7dIycGHEwLZZmFx6Uivu7M8U64wIzMsq14dB9lkEhvMDFVy98btc+dez8ySS/GwOyWu9/j+A254AvEvvvhkNB0xx04SqEBkEzxbryWjYG5moViopOhgznrl5AvV938GYe4V2XAaQ0alUIBioqWARpaJYrVoAB4Gio9H2jAw0hJTpKFCfDSQESEFmO/vif40VCABgGQ8UUpCzZHyjxw6qAsxxLBXSCYdyGA0kuNJurbdPXJoOeKiPxym6tb9e++tLL2VKpNHyHMLlldIxr1wFDq+M77dN6xmIteGozE3CaV2o2HmNGUYO5VFx1+S+FlT1S0/3pwEmUgzhCmbnZtp1ErD7o5ZskvVqlcupgLZLu72Qq4UMUwlEKfQZkSF02bRzBKZd4ZsvnzjB7/c2dpfPD47mQyo4VtzjYLRcv2DfpomujF/6qWv/dH3/7v/11an42IHcB2EZOxPq7bn+UjJuL0PA2CQxhGBtvb3u64jszSNI27kmcytJNbjwVTwvqImVLxRN+re7Iu/8X84c/6SSOmXZGP2A1SwTh1/7otPrty4+RkygGdJTbNyEQmJIEVCyl63T3AsJRiOUq5yQ2qMISbEsd35hRmmqel5ZDqmjm7WV373d/7+a1//KjIBsgHNDj6cFlAb5MLh025p5vbjL9Y3rzx4eE3FtumYzGD5FBDTZhRG8QQQB/AxUADwBDLHsunqTA1Cb7K3G/cnht1qNEpJNzdYMusevnjyjbPPvWLrgwOuhiKThFCrXBV5wif727bpmDadDmPLYcxWEiqllVOu237VxXCcp/3h2DW1X6q6fjEJg0QEpsmzaZDnvR5PPM8Kg2Tu2IW55RMiP3gXDJSAUkCLx6nh+Fvb3d5wwDXxix4mOAomJqORmO72h4XSUmd/lEynZp70otE4Go3S2EIwEyKbCqU1w0mxWC+XCjkBZ557wfI8DA9G+lt1/6WXXl67u+lLmfAUKqiJhgQNE+V5JMqncNy3qUYCI8q0xKlQjmFJJMOQapJmk244JTJPIWCAWhBIIASzocjco6fONeafTTz45SiZOsV62usrkRsGerLezrjCOfXnGv1h8M//u/82ydJvvvENCTSCGimoAfLKTezRaS7u37zS2drhWZSFpFgWvbGiKLMVr9cWkE2wOHCa5UYzQTgDRFuMGK5bbnr1GeYQLShlRUaLMZ9s7bZrvp2o+qA7Yo412yhGw75bYjIBpVbdgvH19763s/UIG4VPP7/9N/7g71SPLIG84Faq2D2gyEiZBBea882F1WG8HyXcgNy1RvWZOg7EKHGlxlFEAQPFquXUZ/d2d6fTtsNMqCgSFmKuQkYoIsemGsLZenPl0JHK6tEXvvmW8AwKvjyTxtPUajjAHPfbH3M9TmKGCCUGcwwDY38SjkWQ2NQQykzzCEiZCM4z6Vm2QXDBZQ7gW7vtcq1CTVsp3N7tt9PdXtopGg2HA54/KwwRaVAfzKBDXv3HP7/38LPPqTSww4Ctck0BolmONeNAQMogxxhgBRQ3ILENMwu05UqDQKdVsyrzdd869OIC6y0eP/mt119/LUu5xAczsDJVmZhMOrcc3Dcoio1cRj0Bi3maSqCpkiQ33Jrj1ujqi1/xh8O927exyQQgUZogxByXYqqBmjSq3rCTx2EWQwiEUZk7TqGp8UEcUNiQPLMEF4Du7oYIJDFPo1TEcYYBjKKJaRjMh/2gRzwbSnrzyt27j6/dfXJz7fGTIA2AibnWtqWD/hQ7cL/XL9q00Wg2Fg5BhDk8WB7b5KXlw07JmfQ6h+f97jgLx3k4BADpIBsblp3lAQOIGjaVOhE8SbjEwHNclmRZDrWpZUYB01oIj/hJMkSMqzx3zaW3fufXmXVw5mxW5tvECMOAQkIxMkySxvHmbjsMokK9lfF4tDv9F//TvzSIOHvp208ePjiysEiNgmmad2/dfnT7U5AOucwxJrYP3aLNpVJxPopyDinSFD67O2Q7zXGKMmga1MCOE02mSjdlRrjKAITRMLh/7YqIpVmr+RqWC562gAsF00jm/jiP+p3xZfGovfVAiRzAQcmtCoPNH7skwhxSLPNnJXvIFSFWwT919tS4u62yqPMEzRWd7Sd5ex+AAimaiiswV3Edy4NJrjSq1VyVgCRU0DaIpoZPnzs6O4FwuzMNJ+mpoj8/90KlUcMQ8Dz9kmxyzNE4vPr+ewDGVANNLYCkYzqK2QXHLTpWF47GSSq4NhwryyTKuesRl8FMKadUaC4fLjaqwSAbtKdJQodp+6//8kfLC7POcZL6RQc+8wTcciAYcvlw69GNT36hoGPQtFy1Ew6zDEAGFZIYQuzaeZqCTAAKAIZKZzzJY0M7JC8160XaNEE57943nGS6Ny6f8kxKEZAqe5Zwjqbd3RvJdIM4WdEupKkeT4Y+BJZf5ZqLWGidRVE+jQLTNG1SmT/6wlwVOCSBKpOAmGZuGMw3TKFjJLVWrlOoe36rMn9MAoKfTXMjlDLXmTny3OjtvzCKBSGI5gBhgE00HCWYsnFuzpvW9sbD7Pl0GA42pjsffviT+tJcpeBLmk8GA6kgsV1GIQRYSNHvjY4urs7MzxOlBDxIBqZ51CrXaWbZbimSTMd7VsXitoSaaR4gmGcx4pRK7CCKFJdERCpJBYwUFLlWIIGYEo0BtG3sOGwcqhQawHn9lfPLTY8dLAsoLy5bXkGHicw4BsIBUiAklBaaBhnPpJwQpLeDv3j73Ulsymzie6DVOrX78MEH7/x5b2ud51PXUGXP8Io4zIWpuUAyDlUQjrRU4pnPdOcb5caM5Zh5EjKCxkm4t7cPkYkImCvVtjbvBt19La2AJ9Xm7FJ9ZnP3UdzeMJkxzaTnO2lubPXCLIAlC7UjGmvEqItxzg2kpXTMg3XJKNJcRYP+eHAvS0LPAFU79Vu1rfuDnCOVgonmBSfvjQZ4uD/sjytNj5qKwMjEepxTz7aXVqhIK964PQknUUS++PSzuTNfY5hBrqD1rEF8sNVi8NmDd3/wvf/Z9PxqxQ3SDEpdNHxOXZgDBTW2MJOAC2VToBWkRY8iQZByTQpjyUdDu1Lo9fr7e5u11oI1Yb3+4PKnN+YXDmNTQnJQtfWRFDZUY/mjH3w3GExiFKUxPLc0X2msDCbi4cPtcLwVpoAgo+ygmIo0DxElpmlTg5YKLIvF88+/dv7oyV6W7t1jfk1O9h8/2fj56WQJoUJy4AhAZ+fxaO2aZQqtbUFt1ysLQZxSFRo2jJM0T5BEQGQGIl5lNulvZGkAtJlxhTAhMIdAxWGMVGoA7pgGYE6pNsPskgQwEbHJjAPZUIo4aCzXvKI9nraJ1xDAVTJOY5XkuVYSMLQxGo0/fP/lC2/cWXt85dZ9r7EKEVAWK2mH+ek04DyOPBumIDcg9Qo4SRPbIgByjQ929CQYQm3Acil8HOegn5KMh0JKu1IojAKpYAQgkRzSPIUKWhLGppERmUgtNWIO0JnLIQcSmYDNtmpbaTtLUyYBZUqKYJQdlGpcz0HEzceBAbmCQJs6A5RHQFFvMuGKcFOZkIn9zuCLL64Yprh55/Zv/vpb73333z3a3sUgzEXOtW5PY4xNgFAahYqg/ijs7vaA4pAepLWeac4szH/xUQ9IEMkQAvBkrW1TSBw7zO92Bj2KSb3pMYqBVNXFOc3A5nAXGfmkF7JybXWpOdNa+viHf53xqc38gs3WH990TKOysFqcnQXPKBiZybS/v75x+bOHAE68klc1KIkiO9YRjE1DM+Jl2obA6E1zSO1C1UxFmg0CqLCQwKnXl4+dmg7CrphgITxHQICjaB9oBQECpvUl2XQGe+/86b/tdodMqkbJyWONAcmwRFk2kWnOM4shs2gbBPgWGMXYtA0lEyZ5o1SQyJ5KqdpTDKYnjhw7duj4tfWbZBg8uP7JvdXVb/zatxU8eKWeQo00HQ/D3b29qYZxpAzoCUa/8evfvnp1SyqnO7Ee3bmfQ+m4xEgdRZTMgUoxpUgzfKTZWClXG3WnSouVIh3uTVnt8sef/uz4hVdOHXtRo4OtFox4wrkME1lEQOeE+aZDeQ5ME2lAsc2ERExp07ZcvwbpOkIxMQtISg2p7XtMBVwFSRJLhqDnOQrG4QhilKaZBL3q7PzB8uQEaaC5fen1b+10NhxmPHi83dnbn6SZ4RWzRDBXYer69ZVutxcYoFmvt1546fLnH8BMFqgBTTeJhiYEvuNSMXINR6UgDJRpFgVgcjp9StnojYfd3pO1tbFMtnf3UNHRighkaiYlygTHxDJMGxuE2L45TrCdhYCYEGMTc4PRxMRJrg2IyrMLkI7TQEtEEyk/e++Db/3+W4vewbs06ivHLrx89+aHjk1sqTkygUk6ozzM05wBB2SQIYhJGMcb3V2cDMJgsFwJhqMHk0z4tgwDPk4Zk6A0i0quGHklpLFDSzOrhzSG8lmri1isuXA4/N5PrSKOspBKaDHoajq3ODcI42Q6ibVo1q1qcX5p+bnGzPyk22YmFDx1LDLt7EeGLK3UF46vbD1Zs8GkUmzFe/t/detPvv43/3ZtfkEnB0ENY50F487aldXFJiMuIHaatYfdXqVlObgwyUAMRZ5qZphOscSI++BeJ3NEHjNDKdsxlIbZdABzXarPIbzd39uZK6LO2qNwOnHrRTB+diX+wHda5r3Ndg4MkJipBZgF4lgkOWzNtVCWB/19U+aGKx1TAskcDUuNmUxmk/a+YRftogeB6zpOe2d86siqV27Udsq7vM8D+af/7s+PnD3bLB1c7TI5l5YbJEGv3Z2KkBGMPLB298YP/uwHpaX5VO4vFP22a07D6XAYFcqUcoAIykQajCcFwxFelTEwSRQIJgWHXt5Yu3JjA2PwnX/9L/7B369Q48ATMMu0LSlNl5X8OCTxeFSpF0zPUNMYESS4FrnIDeIYFtTJ3MxcyWV+2YY8QJAajItoCpGgmBkUAYQxLUlNMEEyCbVMgsmzi8SKE9MqlK1iuVqwZXeE8vB2mnGlCAilXyiWFhs8o0cOHW9ncq55fKZ46siR2bprvf3nD7NJWHCBhr7nGEvzrX4PVWsNk9sXXvstDC0EJCEHMa1llRMrOfXSi7/4xacIGKbEYYaLBeoSM4TUcQnIISCG5Zsz1brs9jf74vCcT7geBiEisOD5roKjJKkcm8WPYtO0eCg41KM8uPzx5fPPBhMNCI+/8M3Tl3+xsf5QmZFrUM9AyGslpv/o/hMNTckVtCylwObWrqU4JfGta/eKVBVMGkzzRBKghe9TkSs+zY4cqaSSHSocnV+qJ1L8LxPQEMILLz7/4aFj0+FmmFHLY4YiEGk+GU/HCcqlRNH+fge682dmigKJ6rzPJ/X+xpSVmZJpv7174xYoONgsmYLqSTaBE/bo7o3KzeOnz78OyweuOQ8ywKc2woWZmUnYV+EUSFAmaAiYwixnCJtIxXrQ7xbqh6WfKEDHsV1E0rORRCAKgu7euusXH61PNh8HnbGoWAXU2ekPHvozLyLjy7JxyzPHT18KP/kUEjiYJoR4XMgkJZGABa8Mc0llt1q28zDwijN++RDIxRe3rzNiNRrz1Woj4oRK4M0vSpMaOmKWtA1crDgM0/1Hj8oXDqYEDNcGhET5MCWebRZ5FMS5th34zkc/LF5fOXvhWLVY8zZ6wGZqPLIQGaFEca20glLt7/f6nV616huU+m6ROkBnXYDQeCo//eRaufJnr37zbx8kA80iS0qjMEgiwRMlkYkMFxIHIQA0YEgxw8iTKadMFSpeoZqFXckhBhakNFeS0IIQQGuRa4RymSQRQgbOuNZyMMkbhYMWIQZIc1BgxWapvrMzHIUTYbinj80Vq42fvPsuh2HDPXNn91G7tjk/Z0yy9N2ffvy3xHO5mlRazT2RUe22XD2z6K7MLdor1b1NtHj45PEzFzXMgKbw2XmgQY1BpT7efDTudTiSSGlMMMYAymS2zIht9gYhxcqwaKVsOpVlS7PmDJKTDGo95RiEWpn44unV1w4fvrq3U/YbSQIgU8sFC2AK/YMkTUJd9BoX3vybxkc/aO8TmU0MJo6dP9zJK/fvbDYaJSAAMTyJxSQIZNRllMaCOJbtFewgSSTPU6WGKdsd5qrArSA2LNP3ql5ljipIns2kQaHnGnPf+N3f+9m/+Wcu1hpnLReBHGqRQMAFUMywskztbN8YdI6ScE6FvaQzbBj21iDKFZZptvZ4k1A0SnS3nTgVN0hy6FWHW/thENj5QYPYhVgXa+deu5REm7ev3B4P4gIBqTSmyZS6MFcmzIRpO0kAVToUhqNyh/rAptAycgLH6RiPxZRArA0LOWjWrwc8k9lwuL+7clLLZzeUnt3urFT++I//bm+fP2xfF1GskQkZUwrzNLfrdaoDI/WatTnuBIeee3351OtJf1CYWbpx7dNScaEbTjAwFlaaS+XDD+4/vL+9PZkmvTjFxFicNXqjXakuHniCDFLCB+1oMBoE4xwSg0AwHkTahCPR7wfjw0vLxNJWroTrUgO23Eo6TXiWZggZKo8AXNvemVk9IlMwfZwtLywkg9O7ERz29z+9e2f+7P7BVptdmqoLwyd3oVn17ZxQahmuwkhqxKACtq25SidTpUO/hrkYuZZt+5VJFKhcQI2YUZa5oATrLNZQQa3C6b5h2EpCLRgSB75TUESkhg5ulmfe/+u/HASxp9y6Vyq5hbmmtTFI9va2t8dRKcqAPbe/vunj3meXP+709zXIlhpLIgmwEHO+t2CqEazPHiscf/lrpbIHFZBIU3KgG6NgMDoMkl1Gp9os4Fxhk4XhwGAu9VivPbAs4OCi7/jTCTxz6fTJldmt3Z3t/oM8Bpjm2HLSTEhc7k31AHLTxLbrMsABJ/Fkd2ewdiAbCShQraWzWuya1zvtPbS9vek0Bv1BZiNhKaWoHIUBx8q3nVhRHmYCJ7mBONa+443SiRAxYXkijShDk0n37Mq51TNfsamFIKT6wENLIrBtHD2+vLbaSnY2EbBNFRrFArS9GUMyE0icaAlArm27EMPY1K1BN4hcd5JGSRBkGWQU5phykQLA4zDNohzoqNPbFZOpkR5MQCf51IA4Sif+XHU1LPWd3nTH4K5KAyU0IBZLM6048Fyq4ahaXE3qzvkLK52bP+12u1Wb+UV3q9Pe2X8AC5V6uTwK20kM5TjpdbZVJvSzH6SRZx8urM4vlBr17FEqBAIsESJFoWVE7v3bt5tVjHQ6HY5mF2fmmkfMHEmX1mZb4KZhkLpv0emwYyArHD3YGm1Ox9vTXA/jgUyD0XTUmp/BzsGpA1MZCuiXGxUiJzqhCPIEa6EAtWtF32Jg1OvN1YsDlla9YnsvdOTEcmiIKDXMkuXRoprEIknjvDsKtBQi7rW3w1jVSgXJbM89KEFip+DX5kv9NvO8LBMMJApNo1FMCUNeHYgojSe+Y3v1JqN2HkcMa+p6hhbZNBIJoBhoyLSGClMEZZakUBNmOIgWqFEySgeddSgBUEpKWZ5ZPf7Cm/Thjb3d9Qno3//i8u72/iQxJskTaq9Ew1TiUmkmSruFgIfMlLubYWO+yAqKIFUp+9F49GRt79RXvzHTXABIYYI0UM9GxgHFRiGzkLKK5ZIyWb8rcpGIXO3tT4oBRNRgyDKRLpXqF4+calkOrOhmyYLTtNp01ne2DeE6Zdh5sFGkujV7JNu7X3BSAtwsH41HkXz2rx8pc0BYoVaT41pYKcRpWpd+mCmQjRbrFeY7SPEkDnScY0N4tpFKlMo0hnppvtGe8Dlsd2jIsA6TADNwfOEbv/F3/u9cWQYxEYKCH/SgqMJSq1KtMFMrT3EQbrUD6cAM2z7GGleqUAJXZZNiZanuL/vNogm152Tbt35cqlh3bgGHZSOFoaIJ4KRk8piLBCqoopTHBgYH3gzo3Mgt1NmdZJSYnmcVzX5bQhMgC02zFAsLY4yQJJQahJjEOPfypdlZNHryQaFQyAEGzEFGYRzvkv2JAblju4zg4USN291MCvfZxMMBDWFgSWwx7luUmq5JscOA1JNxb9IdT7IoTngCErW0cnp+YQEb6urly7GKL718af7IoVprGUNniiJpGtv3HkuVM0xmSg2vWBwGwPWKFn82AIdsptT5Y4fPfuM3jUJdIlMDBRQHkW4uN+vV2dUzp7/+5m8daS4tFGfmG6XC3EyxNWt59fn67JHWfIHVBnEyHexM+lvJZLi9tb3b7TzZfnLl/lWQRUXnwAUwkSJSNu36ZDikpmCeTxCoNOvV1oxl24rzYLAh+MivLFmuZ7pIAW6a1KY2QCkzAIISY6okAIBIDRDWzDCZ38B2jVkNahyc06CGWFOiGLWd19/87T/8e//xmefftB2vVrfnaiXPRUwhpcebg/UrVz/QU7B49MyFs5fKcwsM6hwIaNtzjcr84mJfoUSp5qEjEANqUKAkohAB9Sym6RRgJaLFuVY2yVOVKQWwggXfBBQinJbrXrlcYnl25LmXbcdgmdPfzdIkxzSoLzRYgXAz80y2tzPcW9ue8nhprt6sIWZSbflYHXTWCRcIAQoMgMqCOnOz1dVDlfYoX9/uCASrDinVC8QjyrC7YYKg2arOFHzLd8wszFUm+wMElD+KyVQSx22cu/imJmUJqeI5Qojqg7mKBBKdawNLTaxSvekWGgrIDMLBKAwmfLC7E472PaYXa0GtXncac8Vy7czzl+bnVx3XPzRX1kS7JvJcIqeSZ3IaJhzLKc9Nt2xZjuAHO5lVoGFZfqOcD7b6uzuuN+uXZ5AFOBI6k9SQGWR5LLBNzOoKR4XGyWNGeVFjqRmShECryHPAc7o/7CjGfaQ9rGDGLcvGUqX4ywVojBzi6jNnT689uMb3plEykTY1qdHrb9uMRQUVZaPFI8sz1UOuZfaH0eNb1+eS06devKQzbFpGwbXKlr58/dPEsu7cX6OU+oZjO+7FU0vHj5y0zGc3LqJp2TcSzr9+8dLNX/x8O+jlECDLQ5bjKepnOOuh7d4NLTQqMFtYzDT0JC8tlpslK51MiYJL9UKvtx9Nh91eghDEUmiLxdO0PrvSahxsaI2JUXJmDp3hDwXSqlhfEnHELCIlRNDEUtz+8LGE5WXDgVpTYsXpQ5fZqOYRIsPhFkICCZmnKaGYS4ioBShPEoFQ7hab2DzoqGBAJAYKIkyBQSlxvdXjJ3f2bsUZTAHBJnUKFaDoJAyiKAh7O6XmzMzJY9qwumvbR48dsWE4bD8BxnJjrnXj3pZlGLZhcQAVgExr8qycOgqoKfRkqjKQjkKoOYd2JrkMs4xqVSxSjf3m7OHnVmeWlwtG/dT1G7fCSTREusxh0SqXDiOjPdIiMQr+7v5uppJcJYahY57Mem4DsmdOk2KEJdasMMuKxb0HDzAziu6479oKaY7VUsXt7ALXs4cBa1aWlluFNChMhh2ewZlCzblQOHrm/K0n96f9yd9466Wzl75KKCOEEi0gkIQ963SFlFZkLL16owJzbbZiiqZ2DWWhkikchaZnoSQIRb5SaFUg0xLhToihWcgDjCJ1qmFQu9xJzEE/Hk4555jnicXI8UPHC1YhR+ODyAkZRaQ0c3Lz1pPKbCFpD6TkgyGAxNAwQprX3WySY63N+TOvQTrr+l6JtI4eP3fjw7cj5SRptHRoFq2F9YJBiRrvTLg2DQsZNgOUIPHldifS3DDYscNnF5qzg+3uUDAdcQSnPEpSgXY2x01mnTp1qeKVAZO9/oMBna66uOgWUjNH2kaQA5SEqRj1B8wwGTJjAQ8tLp4/fMKqtBA4kI1hIQEQ0ID5bmm+HojBqD3mKq3Wq47racRmqi6RXicZA8oPHTubD0ft8LGPdX+7DZKIWbYA/MlY7O9vAhUXLIf5eAXXikv+pZdeo87B8shMmj4zverc6qkw6kGMLc+HSAMFMQDENhqtennusEWY0NIqNNs7D6VGpmlrqxSoeyalUiSCp0IQ2zFzroPRyPVdv75qFHzTPfA3knLGmVSaEpULBKQ6cvx0rT736eWff//7f27LxJL44vETH15/gHM56e8t12etPKk56vj84rETCwWz+PhhZRK7gzGtz65IaEqUIGlBDTGEUB+8i4C5W60fXp7/8MZnRBBA7TziwFBaKQUTAp1XTp9749JvW8XI0wg65lx9ZXIi+/TGk+KFWsC96X4/y2JqoKHOJjlP4ywYy0JtsVAtLi0v+qVniQ1BQANCqV+YMYzSMNE25pUakRwyzAejaNTWM9WSgIWX33xhuTWDYBaN2zev3TZIOnt0dfXIi83VMxfOnCO+W7OI55dNpmSMkGFpRHR8kKRZPuFQOpXi8it/I7j3Y8L0KBv4NrRqjXAvZ0pLEfd629brv5lpyHOBFGYIubOH7a3dXbhbyYnAI1t7VHMtiA0psOz5xcbLr3wVmFQ8a0MzCTXRxfLM9eFOvXXELTbD7k6QWhhzRawkU9QjWKdIwaXFixm2GIQQsfrKi/X1R4PNbaFK6ShJslwr6WhplSpKBrw3PnT4BQAZyJMvyYZYQGswP1/8m3/nH046/9Xmzc9JqSCVMjyMNRcp9GcXG6unjZIlAJXAqBXcxuy5etXNgnAkzHFnYFC0sDq79qQRpbvludm5avXSV16ra6vgNzB4tgk09zTLLTjc6Xav3HQKKKKQ48RRYro3sppIm7peWX109ZrK1bd/7a1W6eSjjWubD2/dvHELSj7qDfuJIB5EmgJtU8ckttlqHnrlxJtHF0+U4UEtBVEAcpxDYfgV2ylwPtZAQq0JBUJqVJw/+crfEGxGamgwqDITxABoG2pgub5fXU16D+MwBtRR0lCSjKadXmdyxFvxai3TYfjZoFAKNFG5BBoCArTESlPI5hut+jd//8UX37z64EHn4e1OTwJoYBDML50sr9a7yXi6u+d4ZqNxdKk5Mz939MlOpzVz5pVivVb1CfSUEggjBYESB1stoOiw6/8Hf/yPbr1/p6cGgtoAYihzhjQx7fOrh/7gj37XUG5k+NzUSJHCXOGlhZc27+/ZZYFlqLr55s4etL3yLGBubk+caJo89+qZI185FMZ2/OyACwRTFEINtMkWDr82Ga05JbW91tt7speman1v6DsYGa5ftl5/+ZV6pay1xiTV1Fx/8MWlF75aqh+BwDCKVbvSBEBESU6khSnEmCCI8EEtHSANlcgxo6ZnS6vSD27bbmYJbKWDkRAABqzgI970i0sIYaKUwBKYPhF2HkzCcVdJLGhabzWONpXtMWyVVk88V26ax86eAw6gz0o1OQEMZHb90IVX/iFzIEr2xp0HhAoIrbmaDriBkCud1sVv/CErzwKdEqAUwqxybPVr34x/8WOR02g8olL1chQFvFDXZeQvnlpeOFLXSv8vJ6gD2aQJtgzgFwsnjx37R//RPxn+P//PW+NBSqiGQCsqAGrNz1dKJYCpykWZonnLLtpAoTyMB9QsM2IPOlfy3tASQkxGc4dOfPWl11+5+HI6TRzLFvTZbytsE2joIf3V1y9e/Z1v7965PVUPiXYlQTKbNuwjKwszTk4/+mEadNrBdLJYmi60VqNOp1msbGynnDo6m0IJIAJZrpdXDv/Bb/5RefaspQHAhD67EokhRoQDCW1qA6ZyASmTCAKhBJbKMG3DqmllIq2kUkLkhdKCRgBKBYht2PPD8HHOU9OtKU2iYLJ5+4nbaNQOXTQtGygtn430C8GVhlrqXEpEcC5zA5pQZ5aJV8hM8ZS3V6t/ce3W3Fqx6peJ4RrUKXkmczZbx18tVRYlJFbBPezMYIQJJAIlGkgEISYAaSzRQSropnxqinOvn/kH/+k//e5f/MW9jSeRTBRUWthAwguXzo+ilOntpnGYQlPozLWAzM1vvP7au7c+5/F0/sj8YNDeau9vQUgDdPzcyUMLzfMvPOeUyjLoy2cjtsQCEAgEoAFZa+H5weatLHpSp+O8YW6NlDkwc5WSCXz5rTeOnDpFFJccGob+yguvVFzDK8wbDpZ57BIfI20YJgFUQwgBhAJyAPSzAWjKMqUhwtyi0ZiybLAfBAPmV0fDsAwB98qB5qXqmcL8kQQKCGMdU7voTbymNXOuvNt/dP82dgh3J0cPHZszDjXOP3fs+OkwSgyXKaSlfjbvAhTOtcXw7OmXh4NOrm1gnpyv99fbd+1mDcc65/LCq6+d++YfceiAGCqQMIMg0ZqvvylfcOLu4En0IU8EQ6MkMr/y1d+yCm4CZqFZBSoFBv+SbGCOsAEkUNwUz715/rce/eGff+/fAJI+bid5mp47efbbv/U3/aJJLQSRnjt0+IVSqWz5Io7zcNyY8avHZ9fNtDEb+quN32ydWJ07WncIJJA5UmmQi4MvlwltA40wcUz0j//Of3T9/pXvfOdf3Vt74GWEVt3jx88WMbXq5huvf+3J9jUUC0x52bZeOPtSrVTMf/SXD9f7JaQsy0r9lmPp1974vebyMQK1iW2oDZQf/IIjUxppACTWTGtFLYMBiBSQjCiJMaREIgwF0BBIBTAzWysnBUYYSClSZnv1Q0e3HoapMLyCnQVhbeX44ZMXC7UWIJJgAMRB5DQw1hAClWOCEIamYUIthEJYZYlMTVOvzteZfZF6nosMqVMDRK1yvXXqXGHmsMcwhxAq7VhcSEjNjOQYQagNiTRQSuj8WZnbqRITIAj+3u//3suvnv/OD9/+k7/4oR70oNY1XZprnGxVLeqcRpCZDtTcjGJluMRd9C7KU9I+YZnOg4d3i7hSLhSf//Y3/8lvv0XKIJAiHAeWXaXGsywgS03DATJHVCmJV89/a+2Lv364ftt0S1WVzdR4nFZnTh5/8eVvOdQRPNOEa4hnlo+YhhVBhbFiBDCTCQip1hhJggglCEEoRI7ZgTuLpyn1IQTWeDryZpdal/422/x0tL1GbdjrtyFGXuX4ude/UW8uQBGqJKdMp2leqDfOvvW7cRJ99Pk9wh3aKDdOf71ge4WlBRNbZgMrA2sdI9Y+SNI0gIRgpAnwfFsmqHLsxeLy6ZXoT/4LnKU+q7Ze+/0zL/6RQR3NM2pzwQlCHNo4TsvVmZeywqjQaH3x8c/7t68vHl+dXXy53FpFRjM1aJoooL/8L4Fh0vO8OoeQZjhU+Ve/9ZZ0vfV7H3iP2ti0//B3/+FzJ87FVEIFqEQ6JkW36FTR5G4bQilzyQx89NxS3A4P20fNSk1IWKQ8S2QqgKJZxg/ONkr0obU4zWNEsF0rnLYvZtK9c3f9yHJFeX6jvghNV3Lv0EvfrMyd0j4Iuen7jtdSp5uXnPnye++927m/Q33jlZdfNE3/xPFzCVeGQwBXRGbd4ODiAM2lRIopxBOpYaw55DymNhMIEYBVQjIRUIupmEmcEaQzQBhAqRIkzZVhITzr17IoCwlyq43K0olaqTUDFVLpNKM5owebIMqwlCHCBuIai5wDCHiWaW0ZWBCCoU6itFWvvfRSK0lzmbVlPGCmWSp70DF4KlAuheK5AAhoSA0ANSBKScplri2Fnk1ZhvlOGdWVZJHIXLv51ktvlqW3fvNe6MrTS41GrS6pl42Tms0Zp6EEOs1iJRwNV+aXlKej8XTJmStD86XTz196/iK1FFco1NKitqt1zg58Jx6DrCQkVihPLIgUm21e+FsZbvR21ve7a0db5cr84sVL3yp7LYGJygRDRDOFYdmrMaz6acZ9r8CYSyVEGguKJcQSIp5mitLR+IAC9+5qtDK1NIbKNuozZ1pLR5eH69uf/ul/r7G3tHDKOX66snIEGeMkySDUWRRbxdQuVLjMz7zw8pWffO641fnVucMnjjOnQagUYuCCUhoOAdX9/rNZfmJYgAvJEw6UxtTFvn8SJ/Jrb/0Hw537xdVDqPQ8NAuBkFglmeaAYCUFBFrojNiU6BIVR2ePSac+c+7MW1aBhnTJpwAIhHiWPLsE8Sv7lf3KfmW/sl/Z//b2/wftg5XaDako5AAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Random starting point (8 random images):\n", + "sample = torch.randn(8, 3, 32, 32).to(device)\n", + "\n", + "for i, t in enumerate(noise_scheduler.timesteps):\n", + "\n", + " # Get model pred\n", + " with torch.no_grad():\n", + " residual = model(sample, t).sample\n", + "\n", + " # Update sample with step\n", + " sample = noise_scheduler.step(residual, t, sample).prev_sample\n", + "\n", + "show_images(sample)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "70m_LsIVbhAe" + }, + "source": [ + "The `noise_scheduler.step()` function does the maths required to update `sample` appropriately. There are a number of sampling methods - in the next unit we'll see how we can swap in a different sampler to speed up image generation with existing models, and talk more about the theory behind sampling from diffusion models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 7: Push your model to the Hub\n", + "\n", + "In the example above we saved our pipeline to a local folder. To push our model to the Hub, we will need to model repository to push our files to. We'll determine the repository name from the model ID we want to give our model (feel free to replace the `model_name` with your own choice; it just needs to contain your username, which is what the function `get_full_repo_name()` does):" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'lewtun/sd-class-butterflies-32'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from huggingface_hub import get_full_repo_name\n", + "\n", + "model_name = \"sd-class-butterflies-32\"\n", + "hub_model_id = get_full_repo_name(model_name)\n", + "hub_model_id" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, create a model repository on the 🤗 Hub and push our model:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "xGCNchpSBAcS" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://huggingface.co/lewtun/sd-class-butterflies-32/blob/main/model_index.json'" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from huggingface_hub import HfApi, create_repo\n", + "\n", + "create_repo(hub_model_id)\n", + "api = HfApi()\n", + "api.upload_folder(\n", + " folder_path=\"my_pipeline/scheduler\", path_in_repo=\"\", repo_id=hub_model_id\n", + ")\n", + "api.upload_folder(folder_path=\"my_pipeline/unet\", path_in_repo=\"\", repo_id=hub_model_id)\n", + "api.upload_file(\n", + " path_or_fileobj=\"my_pipeline/model_index.json\",\n", + " path_in_repo=\"model_index.json\",\n", + " repo_id=hub_model_id,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The last thing to do is create a nice model card so that our butterfly generator can easily be found on the Hub (feel free to expand and edit the description!):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from huggingface_hub import ModelCard\n", + "\n", + "content = f\"\"\"\n", + "---\n", + "license: mit\n", + "tags:\n", + "- pytorch\n", + "- diffusers\n", + "- unconditional-image-generation\n", + "- diffusion-models-class\n", + "---\n", + "\n", + "# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)\n", + "\n", + "This model is a diffusion model for unconditional image generation of cute 🦋.\n", + "\n", + "## Usage\n", + "\n", + "```python\n", + "from diffusers import DDPMPipeline\n", + "\n", + "pipeline = DDPMPipeline.from_pretrained('{hub_model_id}')\n", + "image = pipeline().images[0]\n", + "image\n", + "```\n", + "\"\"\"\n", + "\n", + "card = ModelCard(content)\n", + "card.push_to_hub(hub_model_id)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the model is on the Hub, you can download it from anywhere by using the `from_pretrained()` method of the `DDPMPipeline` as follows\"" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "01a9f8ae46e74ce58c3174b09dfa6f86", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Fetching 4 files: 0%| | 0/4 [00:00" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from diffusers import DDPMPipeline\n", + "\n", + "image_pipe = DDPMPipeline.from_pretrained(hub_model_id)\n", + "pipeline_output = image_pipe()\n", + "pipeline_output.images[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Great it works!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VOWORe9htIBI" + }, + "source": [ + "# Scaling up with 🤗 Accelerate\n", + "\n", + "This notebook was made for learning purposes, and as such I tried to keep the code as minimal and clean as possible. Because of this, we omitted some of the things you might want if you were to try training a larger model on much more data, such as multi-GPU support, logging of progress and example images, gradient checkpointing to support larger batch sizes, automatic uploading of models and so on. Thankfully most of these features are available in the example training script [here](https://github.com/huggingface/diffusers/raw/main/examples/unconditional_image_generation/train_unconditional.py).\n", + "\n", + "You can download the file like so:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "26zRVMa9oq3U" + }, + "outputs": [], + "source": [ + "!wget https://github.com/huggingface/diffusers/raw/main/examples/unconditional_image_generation/train_unconditional.py" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7XMGtxaXc6kQ" + }, + "source": [ + "Open up the file and you'll see where the model is defined and what settings are available. I ran the script with the following command:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'lewtun/sd-class-butterflies-64'" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's give our new model a name for the Hub\n", + "model_name = \"sd-class-butterflies-64\"\n", + "hub_model_id = get_full_repo_name(model_name)\n", + "hub_model_id" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "isghoKaooniE" + }, + "outputs": [], + "source": [ + "!accelerate launch train_unconditional.py \\\n", + " --dataset_name=\"huggan/smithsonian_butterflies_subset\" \\\n", + " --resolution=64 \\\n", + " --output_dir={model_name} \\\n", + " --train_batch_size=32 \\\n", + " --num_epochs=50 \\\n", + " --gradient_accumulation_steps=1 \\\n", + " --learning_rate=1e-4 \\\n", + " --lr_warmup_steps=500 \\\n", + " --mixed_precision=\"no\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As before, let's push the model to the Hub and create a nice model card (and feel free to edit it as you wish!):" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://huggingface.co/lewtun/sd-class-butterflies-64/blob/main/README.md'" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "create_repo(hub_model_id)\n", + "api = HfApi()\n", + "api.upload_folder(\n", + " folder_path=f\"{model_name}/scheduler\", path_in_repo=\"\", repo_id=hub_model_id\n", + ")\n", + "api.upload_folder(\n", + " folder_path=f\"{model_name}/unet\", path_in_repo=\"\", repo_id=hub_model_id\n", + ")\n", + "api.upload_file(\n", + " path_or_fileobj=f\"{model_name}/model_index.json\",\n", + " path_in_repo=\"model_index.json\",\n", + " repo_id=hub_model_id,\n", + ")\n", + "\n", + "content = f\"\"\"\n", + "---\n", + "license: mit\n", + "tags:\n", + "- pytorch\n", + "- diffusers\n", + "- unconditional-image-generation\n", + "- diffusion-models-class\n", + "---\n", + "\n", + "# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)\n", + "\n", + "This model is a diffusion model for unconditional image generation of cute 🦋.\n", + "\n", + "## Usage\n", + "\n", + "```python\n", + "from diffusers import DDPMPipeline\n", + "\n", + "pipeline = DDPMPipeline.from_pretrained('{hub_model_id}')\n", + "image = pipeline().images[0]\n", + "image\n", + "```\n", + "\"\"\"\n", + "\n", + "card = ModelCard(content)\n", + "card.push_to_hub(hub_model_id)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "StJOioIqdOOQ" + }, + "source": [ + "About 45 minutes later, this is the result:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 113, + "referenced_widgets": [ + "60b5a9bd856342d9b9e656c7962551c0", + "845d19fc07fb4db198710258f8cd82fc", + "cf19bc72f2544217bba52542a5bbd5d8", + "072322f017d046ffb2c161b0b091bc03", + "42ab43b3645641e7bddb7948f2ae48da", + "d9cc307233a74d5bb2f0fcc6467c26fb", + "34c9e90ecde6463dabbc802c510f2e7c", + "1f1d0195b44d43e79f3cce0fbf5ff575", + "d0a1c578c07747188f022421767b1c02", + "6907ff28bad14fcdbc7bbc7ccd6df4cd", + "055eea9718324654bc1c9fc63fc7c171" + ] + }, + "id": "pxI6aqVnHe10", + "outputId": "6453d1de-ad1c-4114-b648-cdc8526ddb06" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "07d1a62245d748f4b0249c613b06663a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1000 [00:00" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pipeline = DDPMPipeline.from_pretrained(hub_model_id).to(device)\n", + "images = pipeline(batch_size=8).images\n", + "make_grid(images)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y5EtNv12dTy_" + }, + "source": [ + "**Exercise:** See if you can find training/model settings that give good results in as little time as possible, and share your findings with the community. Dig around in the script to see if you can understand the code, and ask for clarification on anything that looks confusing." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pEa6TgCFtQwv" + }, + "source": [ + "# Avenues for Further Exploration\n", + "\n", + "Hopefully this has given you a taste of what you can do with the 🤗 Diffusers library! Some possible next steps:\n", + "\n", + "- Try training an unconditional diffusion model on a new dataset - bonus points if you [create one yourself](https://huggingface.co/docs/datasets/image_dataset). You can find some great image datasets for this task in the [HugGan organization](https://huggingface.co/huggan) on the Hub. Just make sure you downsample them if you don't want to wait a very long time for the model to train!\n", + "- Try out DreamBooth to create your own customized Stable Diffusion pipeline using either [this Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) or [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb)\n", + "- Modify the training script to explore different UNet hyperparameters (number of layers, channels etc), different noise schedules etc.\n", + "- Check out the [Diffusion Models from Scratch](https://github.com/huggingface/diffusion-models-class/blob/main/unit1/02_diffusion_models_from_scratch.ipynb) notebook for a different take on the core ideas we've covered in this unit\n", + "\n", + "Good luck, and stay tuned for Unit 2!" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + }, + "vscode": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + } + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "0139e5a0e8ab4c0687daa4ea87e5f496": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2fe502a96cf94c5d91277ed057e0bbb9", + "placeholder": "​", + "style": "IPY_MODEL_947c7e5180e647839d8949793fcc6767", + "value": "100%" + } + }, + "055eea9718324654bc1c9fc63fc7c171": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "072322f017d046ffb2c161b0b091bc03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6907ff28bad14fcdbc7bbc7ccd6df4cd", + "placeholder": "​", + "style": "IPY_MODEL_055eea9718324654bc1c9fc63fc7c171", + "value": " 1000/1000 [01:15<00:00, 13.55it/s]" + } + }, + "1943d545cd5a4b2a80fbe75c2bb0faba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f1d0195b44d43e79f3cce0fbf5ff575": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23d6333cec9f4ae8a89aaf3dd2be3fa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40dedef6535d437591ee8e41c51473e3", + "placeholder": "​", + "style": "IPY_MODEL_e670878b67b5487ba0648b417f0c6801", + "value": "Fetching 4 files: 100%" + } + }, + "269bcc0cbf8e43d495cc20396ee85262": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "295fb8ff81a742e29db36e10c7f0c9df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b89dc53965e43088fe831f5c283d25c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2caa903e553c49d1b361b9265a1910bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fe502a96cf94c5d91277ed057e0bbb9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "30b35a7b0ea34e6885e0e845e9e1f53d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c662411b1c824f5f8ea3795bd9809c8a", + "max": 51, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a13189c5ded3413abc594b63c7d43de7", + "value": 51 + } + }, + "328dada43e2f4744a6ce12b5b37b4924": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "34c9e90ecde6463dabbc802c510f2e7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "40dedef6535d437591ee8e41c51473e3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42a7d07aaa6e4a50a9a7efb2de9cbf57": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42ab43b3645641e7bddb7948f2ae48da": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43f21dc10a94400899d3ed87bf0c4980": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5442e51a3c054f33a689e53dc21d02fe", + "IPY_MODEL_30b35a7b0ea34e6885e0e845e9e1f53d", + "IPY_MODEL_eadbf4a58e4f430b91be7fae2527b3bf" + ], + "layout": "IPY_MODEL_46dd6042bb4d4a37bd3b39999da6b56c" + } + }, + "4517c381c26d43cd8d03fb27b1a26774": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72c1e8031d5d44229bf6d1c989f628fa", + "placeholder": "​", + "style": "IPY_MODEL_77a61fe86ad04d448019ce8b6e7e48bd", + "value": " 4/4 [00:00<00:00, 92.66it/s]" + } + }, + "46dd6042bb4d4a37bd3b39999da6b56c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a99584eb73440e5be79572549490704": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_23d6333cec9f4ae8a89aaf3dd2be3fa6", + "IPY_MODEL_ddbe46751fbc48bbb5385ebfeaf62ac6", + "IPY_MODEL_4517c381c26d43cd8d03fb27b1a26774" + ], + "layout": "IPY_MODEL_295fb8ff81a742e29db36e10c7f0c9df" + } + }, + "5442e51a3c054f33a689e53dc21d02fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d81afa136df943d581ee813a9e2a110b", + "placeholder": "​", + "style": "IPY_MODEL_d017abde597e49bf982b135941662626", + "value": "100%" + } + }, + "5d443d805c4d405d9ddea69d06e29c64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9fb67b6c9d546059aae7875853191ab", + "placeholder": "​", + "style": "IPY_MODEL_731f299d38b2482dab9ef543aac76b44", + "value": " 1000/1000 [00:27<00:00, 43.75it/s]" + } + }, + "5ecb9b67a77f418c8cbc5245941298c6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "60b5a9bd856342d9b9e656c7962551c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_845d19fc07fb4db198710258f8cd82fc", + "IPY_MODEL_cf19bc72f2544217bba52542a5bbd5d8", + "IPY_MODEL_072322f017d046ffb2c161b0b091bc03" + ], + "layout": "IPY_MODEL_42ab43b3645641e7bddb7948f2ae48da" + } + }, + "68f358d320194bd1a7e8ce64e26f7bb5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ecb9b67a77f418c8cbc5245941298c6", + "max": 1000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9cc9689be42246c48698067ddc6fa5ef", + "value": 1000 + } + }, + "6907ff28bad14fcdbc7bbc7ccd6df4cd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6c09a1bb320348659689d40ae2cd44ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b89dc53965e43088fe831f5c283d25c", + "max": 1000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_269bcc0cbf8e43d495cc20396ee85262", + "value": 1000 + } + }, + "6d70ce5841594677b6cf568ebe893636": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "72c1e8031d5d44229bf6d1c989f628fa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "731f299d38b2482dab9ef543aac76b44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "77a61fe86ad04d448019ce8b6e7e48bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "845d19fc07fb4db198710258f8cd82fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9cc307233a74d5bb2f0fcc6467c26fb", + "placeholder": "​", + "style": "IPY_MODEL_34c9e90ecde6463dabbc802c510f2e7c", + "value": "100%" + } + }, + "8a4c2c2e638d4d1e9dac148d014ab5e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0139e5a0e8ab4c0687daa4ea87e5f496", + "IPY_MODEL_6c09a1bb320348659689d40ae2cd44ef", + "IPY_MODEL_5d443d805c4d405d9ddea69d06e29c64" + ], + "layout": "IPY_MODEL_e33c2a591703427c9ad7a52098fa5129" + } + }, + "8d4c6bb0c2f24a898f38f51aba4c7b82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9424e1b1c56941aa8a7b3077015f72b8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "947c7e5180e647839d8949793fcc6767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9cc9689be42246c48698067ddc6fa5ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9dacbfae20c54687976d30129253b0eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2caa903e553c49d1b361b9265a1910bf", + "placeholder": "​", + "style": "IPY_MODEL_6d70ce5841594677b6cf568ebe893636", + "value": " 1000/1000 [00:25<00:00, 43.76it/s]" + } + }, + "a13189c5ded3413abc594b63c7d43de7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b2e83fc209494d47b966e0abf071dcc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9424e1b1c56941aa8a7b3077015f72b8", + "placeholder": "​", + "style": "IPY_MODEL_e54b6068e48d4b76bffabefe0d974ecc", + "value": "100%" + } + }, + "c60a4f9a94a94ba6ad7cadf05f00fee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c662411b1c824f5f8ea3795bd9809c8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9fb67b6c9d546059aae7875853191ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf19bc72f2544217bba52542a5bbd5d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f1d0195b44d43e79f3cce0fbf5ff575", + "max": 1000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d0a1c578c07747188f022421767b1c02", + "value": 1000 + } + }, + "d017abde597e49bf982b135941662626": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0a1c578c07747188f022421767b1c02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d7510d76ac20458ca4df34eaec865372": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b2e83fc209494d47b966e0abf071dcc5", + "IPY_MODEL_68f358d320194bd1a7e8ce64e26f7bb5", + "IPY_MODEL_9dacbfae20c54687976d30129253b0eb" + ], + "layout": "IPY_MODEL_42a7d07aaa6e4a50a9a7efb2de9cbf57" + } + }, + "d81afa136df943d581ee813a9e2a110b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d9cc307233a74d5bb2f0fcc6467c26fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ddbe46751fbc48bbb5385ebfeaf62ac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1943d545cd5a4b2a80fbe75c2bb0faba", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d4c6bb0c2f24a898f38f51aba4c7b82", + "value": 4 + } + }, + "e33c2a591703427c9ad7a52098fa5129": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e54b6068e48d4b76bffabefe0d974ecc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e670878b67b5487ba0648b417f0c6801": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eadbf4a58e4f430b91be7fae2527b3bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_328dada43e2f4744a6ce12b5b37b4924", + "placeholder": "​", + "style": "IPY_MODEL_c60a4f9a94a94ba6ad7cadf05f00fee1", + "value": " 51/51 [00:10<00:00, 4.77it/s]" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}