"""TODO: Add a description here.""" import csv import json import os import datasets from safetensors import safe_open import pandas as pd # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2022} } """ _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "image_ids": "https://huggingface.co/datasets/JLD/unsplash25k-image-embeddings/resolve/main/data/image_ids.feather.zstd", "embeddings": "https://huggingface.co/datasets/JLD/unsplash25k-image-embeddings/resolve/main/data/unsplash_embeddings.safetensors" } class Unsplash25kImageEmbeddingsDataset(datasets.GeneratorBasedBuilder): """_summary_ Args: datasets (_type_): _description_ """ def _info(self): features = datasets.Features( { "image_id": datasets.Value("string"), # "image_embedding": datasets.Features({'x': datasets.Array2D(shape=(1, 512), dtype='float16')}) "image_embedding": datasets.Array2D(shape=(1, 512), dtype='float32') } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): embeddings_path = dl_manager.download(_URLS["embeddings"]) image_ids_path = dl_manager.download(_URLS["image_ids"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "embeddings_path": embeddings_path, "image_ids_path": image_ids_path } ) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, embeddings_path, image_ids_path): tensors = {} image_ids = pd.read_feather(image_ids_path) with safe_open(embeddings_path, framework="pt", device="cpu") as f: for key in f.keys(): tensors[key] = f.get_tensor(key) for num_id, image_id in enumerate(image_ids): yield num_id, {"image_id": image_id, "image_embedding": tensors["embeddings"][num_id].unsqueeze(0)}