--- license: cc-by-3.0 task_categories: - question-answering - text-retrieval language: - en tags: - vector search - retrieval augmented generation size_categories: - <1K --- ## Overview This dataset consists of chunked and embedded versions of a subset of articles from the MongoDB Developer Center. ## Dataset Structure The dataset consists of the following fields: - sourceName: The source of the article. This value is `devcenter` for the entire dataset. - url: Link to the article - action: Action taken on the article. This value is `created` for the entire dataset. - body: Content of the chunk in Markdown format - format: Format of the content. This value is `md` for all articles. - metadata: Metadata such as tags, content type etc. associated with the articles - title: Title of the article - updated: The last updated date of the article - embedding: The embedding of the chunk's content, created using the [thenlpr/gte-small](https://huggingface.co/thenlper/gte-small) open-source model from Hugging Face. ## Usage This dataset can be useful for prototyping RAG applications. This is a real sample of data we have used to build the AI chatbot on our official documentation website. ## Ingest Data To experiment with this dataset using MongoDB Atlas, first [create a MongoDB Atlas account](https://www.mongodb.com/cloud/atlas/register?utm_campaign=devrel&utm_source=community&utm_medium=organic_social&utm_content=Hugging%20Face%20Dataset&utm_term=apoorva.joshi). You can then use the following script to load this dataset into your MongoDB Atlas cluster: ``` import os from pymongo import MongoClient import datasets from datasets import load_dataset from bson import json_util uri = os.environ.get('MONGODB_ATLAS_URI') client = MongoClient(uri) db_name = 'your_database_name' # Change this to your actual database name collection_name = 'devcenter_articles-embedded' collection = client[db_name][collection_name] dataset = load_dataset("MongoDB/devcenter-articles-embedded") insert_data = [] for item in dataset['train']: doc = json_util.loads(json_util.dumps(item)) insert_data.append(doc) if len(insert_data) == 1000: collection.insert_many(insert_data) print("1000 records ingested") insert_data = [] if len(insert_data) > 0: collection.insert_many(insert_data) insert_data = [] print("Data ingested successfully!") ```