--- dataset_info: features: - name: uid dtype: string - name: query dtype: string - name: question dtype: string - name: simplified_query dtype: string - name: answer dtype: string - name: verbalized_answer dtype: string - name: verbalized_answer_2 dtype: string - name: verbalized_answer_3 dtype: string - name: verbalized_answer_4 dtype: string - name: verbalized_answer_5 dtype: string - name: verbalized_answer_6 dtype: string - name: verbalized_answer_7 dtype: string - name: verbalized_answer_8 dtype: string splits: - name: train num_bytes: 2540548 num_examples: 3500 - name: validation num_bytes: 369571 num_examples: 500 - name: test num_bytes: 722302 num_examples: 1000 download_size: 1750172 dataset_size: 3632421 task_categories: - conversational - question-answering - text-generation - text2text-generation tags: - qa - knowledge-graph - sparql --- # Dataset Card for ParaQA-SPARQLtoText ## Table of Contents - [Dataset Card for ParaQA-SPARQLtoText](#dataset-card-for-paraqa-sparqltotext) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [New field `simplified_query`](#new-field-simplified_query) - [New split "valid"](#new-split-valid) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Types of questions](#types-of-questions) - [Data splits](#data-splits) - [Additional information](#additional-information) - [Related datasets](#related-datasets) - [Licencing information](#licencing-information) - [Citation information](#citation-information) - [This version of the corpus (with normalized SPARQL queries)](#this-version-of-the-corpus-with-normalized-sparql-queries) - [Original version](#original-version) ## Dataset Description - **Paper:** [SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications (AACL-IJCNLP 2022)](https://aclanthology.org/2022.aacl-main.11/) - **Point of Contact:** Gwénolé Lecorvé ### Dataset Summary Special version of ParaQA with SPARQL queries formatted for the SPARQL-to-Text task #### New field `simplified_query` New field is named "simplified_query". It results from applying the following step on the field "query": * Replacing URIs with a simpler format with prefix "resource:", "property:" and "ontology:". * Spacing the delimiters `(`, `{`, `.`, `}`, `)`. * Randomizing the variables names * Shuffling the clauses #### New split "valid" A validation set was randonly extracted from the test set to represent 10% of the whole dataset. ### Languages - English ## Dataset Structure ### Types of questions Comparison of question types compared to related datasets: | | | [SimpleQuestions](https://huggingface.co/datasets/OrangeInnov/simplequestions-sparqltotext) | [ParaQA](https://huggingface.co/datasets/OrangeInnov/paraqa-sparqltotext) | [LC-QuAD 2.0](https://huggingface.co/datasets/OrangeInnov/lcquad_2.0-sparqltotext) | [CSQA](https://huggingface.co/datasets/OrangeInnov/csqa-sparqltotext) | [WebNLQ-QA](https://huggingface.co/datasets/OrangeInnov/webnlg-qa) | |--------------------------|-----------------|:---------------:|:------:|:-----------:|:----:|:---------:| | **Number of triplets in query** | 1 | ✓ | ✓ | ✓ | ✓ | ✓ | | | 2 | | ✓ | ✓ | ✓ | ✓ | | | More | | | ✓ | ✓ | ✓ | | **Logical connector between triplets** | Conjunction | ✓ | ✓ | ✓ | ✓ | ✓ | | | Disjunction | | | | ✓ | ✓ | | | Exclusion | | | | ✓ | ✓ | | **Topology of the query graph** | Direct | ✓ | ✓ | ✓ | ✓ | ✓ | | | Sibling | | ✓ | ✓ | ✓ | ✓ | | | Chain | | ✓ | ✓ | ✓ | ✓ | | | Mixed | | | ✓ | | ✓ | | | Other | | ✓ | ✓ | ✓ | ✓ | | **Variable typing in the query** | None | ✓ | ✓ | ✓ | ✓ | ✓ | | | Target variable | | ✓ | ✓ | ✓ | ✓ | | | Internal variable | | ✓ | ✓ | ✓ | ✓ | | **Comparisons clauses** | None | ✓ | ✓ | ✓ | ✓ | ✓ | | | String | | | ✓ | | ✓ | | | Number | | | ✓ | ✓ | ✓ | | | Date | | | ✓ | | ✓ | | **Superlative clauses** | No | ✓ | ✓ | ✓ | ✓ | ✓ | | | Yes | | | | ✓ | | | **Answer type** | Entity (open) | ✓ | ✓ | ✓ | ✓ | ✓ | | | Entity (closed) | | | | ✓ | ✓ | | | Number | | | ✓ | ✓ | ✓ | | | Boolean | | ✓ | ✓ | ✓ | ✓ | | **Answer cardinality** | 0 (unanswerable) | | | ✓ | | ✓ | | | 1 | ✓ | ✓ | ✓ | ✓ | ✓ | | | More | | ✓ | ✓ | ✓ | ✓ | | **Number of target variables** | 0 (⇒ ASK verb) | | ✓ | ✓ | ✓ | ✓ | | | 1 | ✓ | ✓ | ✓ | ✓ | ✓ | | | 2 | | | ✓ | | ✓ | | **Dialogue context** | Self-sufficient | ✓ | ✓ | ✓ | ✓ | ✓ | | | Coreference | | | | ✓ | ✓ | | | Ellipsis | | | | ✓ | ✓ | | **Meaning** | Meaningful | ✓ | ✓ | ✓ | ✓ | ✓ | | | Non-sense | | | | | ✓ | ### Data splits Text verbalization is only available for a subset of the test set, referred to as *challenge set*. Other sample only contain dialogues in the form of follow-up sparql queries. | | Train | Validation | Test | | --------------------- | ---------- | ---------- | ---------- | | Questions | 3,500 | 500 | 1,000 | | NL question per query | 1 | | Characters per query | 103 (± 27) | | Tokens per question | 10.3 (± 3.7) | ## Additional information ### Related datasets This corpus is part of a set of 5 datasets released for SPARQL-to-Text generation, namely: - Non conversational datasets - [SimpleQuestions](https://huggingface.co/datasets/OrangeInnov/simplequestions-sparqltotext) (from https://github.com/askplatypus/wikidata-simplequestions) - [ParaQA](https://huggingface.co/datasets/OrangeInnov/paraqa-sparqltotext) (from https://github.com/barshana-banerjee/ParaQA) - [LC-QuAD 2.0](https://huggingface.co/datasets/OrangeInnov/lcquad_2.0-sparqltotext) (from http://lc-quad.sda.tech/) - Conversational datasets - [CSQA](https://huggingface.co/datasets/OrangeInnov/csqa-sparqltotext) (from https://amritasaha1812.github.io/CSQA/) - [WebNLQ-QA](https://huggingface.co/datasets/OrangeInnov/webnlg-qa) (derived from https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0) ### Licencing information * Content from original dataset: CC-BY 4.0 * New content: CC BY-SA 4.0 ### Citation information #### This version of the corpus (with normalized SPARQL queries) ```bibtex @inproceedings{lecorve2022sparql2text, title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications}, author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.}, journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)}, year={2022} } ``` #### Original version ```bibtex @inproceedings{kacupaj2021paraqa, title={Paraqa: a question answering dataset with paraphrase responses for single-turn conversation}, author={Kacupaj, Endri and Banerjee, Barshana and Singh, Kuldeep and Lehmann, Jens}, booktitle={European semantic web conference}, pages={598--613}, year={2021}, organization={Springer} } ```