import os import tarfile import pandas as pd import datasets from datasets import Audio, Value, Features import logging from typing import Dict, Generator, Tuple logger = logging.getLogger(__name__) _DESCRIPTION = """ This dataset consists of various Youtube videos in Persian language. Note: This dataset contains raw, unvalidated transcriptions. Users are advised to: 1. Perform their own quality assessment 2. Create their own train/validation/test splits based on their specific needs 3. Validate a subset of the data if needed for their use case """ _CITATION = """ Use this repo info/link for citation. """ _LICENSE = "MIT" _DATA_URL = [ "clips/clips_001.tar", "clips/clips_002.tar", "clips/clips_003.tar", "clips/clips_004.tar", "clips/clips_005.tar", "clips/clips_006.tar", "clips/clips_007.tar", "clips/clips_008.tar", "clips/clips_009.tar", "clips/clips_010.tar", "clips/clips_011.tar", "clips/clips_012.tar", "clips/clips_013.tar", "clips/clips_014.tar", "clips/clips_015.tar", "clips/clips_016.tar", "clips/clips_017.tar", "clips/clips_018.tar", "clips/clips_019.tar", "clips/clips_020.tar", "clips/clips_021.tar", ] #_DATA_URL = ["ytDataset/" + x for x in _DATA_URL][:2] _PROMPTS_URLS = { #"train": "ytDataset/clips/metadata.csv" "train": "clips/metadata.csv" } class ASRDataset(datasets.GeneratorBasedBuilder): """ASR dataset with audio files stored in tar archives.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "file_name": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16000), "sentence": datasets.Value("string"), #"tar_file": datasets.Value("string"), }), supervised_keys=None, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators with added error handling.""" prompts_paths = dl_manager.download_and_extract(_PROMPTS_URLS) archive = dl_manager.download(_DATA_URL) train_dir = "clips" try: return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ #"split": "train", #"data_dir": self.config.data_dir, "prompts_path": prompts_paths["train"], "path_to_clips": train_dir, "audio_files": dl_manager.iter_archive(archive) }, ), ] except Exception as e: logger.error(f"Error in _split_generators: {e}") logger.error(traceback.format_exc()) raise def _generate_examples(self, prompts_path, path_to_clips, audio_files): """Yields examples as (key, example) tuples.""" sentence_map = {} with open(prompts_path, encoding="utf-8") as f: for row in f: data = row.strip().split("\t", 1) file_name = data[0].strip() sentence_map[audio_path] = sentence id_ = 0 tar_files = [ "clips/clips_001.tar", "clips/clips_002.tar", "clips/clips_003.tar", "clips/clips_004.tar", "clips/clips_005.tar", "clips/clips_006.tar", "clips/clips_007.tar", "clips/clips_008.tar", "clips/clips_009.tar", "clips/clips_010.tar", "clips/clips_011.tar", "clips/clips_012.tar", "clips/clips_013.tar", "clips/clips_014.tar", "clips/clips_015.tar", "clips/clips_016.tar", "clips/clips_017.tar", "clips/clips_018.tar", "clips/clips_019.tar", "clips/clips_020.tar", "clips/clips_021.tar", ] for tar_file in tar_files: with tarfile.open(tar_file, 'r') as tar: for member in tar.getmembers(): file_name = member.name #"/".join([path_to_clips, member.name]) sentence = sentence_map.get(file_name, "") audio_file =tar.extractfile(member) audio = {"path": file_name, "bytes": audio_file.read()} yield id_, { "file_name": file_name, "audio": audio, "sentence": sentence } id_ += 1