{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "88f13606", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import re\n", "\n", "import string\n", "\n", "chars = string.ascii_letters + string.punctuation + string.whitespace\n", "chars = chars + \"éèê\"\n", "\n", "url_pattern = r\"(http|https)\\S*\"\n", "user_naming_pattern = r\"@\\S*\"" ] }, { "cell_type": "code", "execution_count": 27, "id": "9bff3e8d", "metadata": {}, "outputs": [], "source": [ "mlma_dataset = \"../../data/hate_speech_mlma_fr_dataset.csv\"\n", "output_dir = \"../../data/processed/\"\n", "\n", "mlma_df = pd.read_csv(mlma_dataset, index_col=[0])" ] }, { "cell_type": "code", "execution_count": 3, "id": "909d714e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tweetsentimentdirectnessannotator_sentimenttargetgroup
HITId
1rt personnage ainsi q tte la clique gauchiste...abusivedirectshockoriginother
2bah oui t'as raison l'autre c'est un mongol.offensiveindirectshockotherindividual
3moi j'ai personne à qui m'adresser pour réclam...hatefuldirectanger_confusion_sadness_fear_disgustotherwomen
6en algerie les migrants sont expulsés dans le ...offensiveindirectindifferenceotherimmigrants
9mytho t'as juste voulu te faire ken par les re...offensiveindirectindifference_disgustotherindividual
.....................
4009vos twt rappel l'époque ou les journalistes tr...offensivedirectshockotherjews
4010tres bien. le cinema francais c...est souvent ...offensiveindirectsadnessotherleft_wing_people
4011j’ai que des rebeus en demande d’amis aussidisrespectful_normaldirectindifferenceoriginarabs
4012sale juif de merdeoffensivedirectfear_shock_indifference_sadness_disgustreligionjews
4014mdr c’est un mongol lui en mode lui demander d...offensiveindirectindifferencedisabilityindividual
\n", "

3193 rows × 6 columns

\n", "
" ], "text/plain": [ " tweet \\\n", "HITId \n", "1 rt personnage ainsi q tte la clique gauchiste... \n", "2 bah oui t'as raison l'autre c'est un mongol. \n", "3 moi j'ai personne à qui m'adresser pour réclam... \n", "6 en algerie les migrants sont expulsés dans le ... \n", "9 mytho t'as juste voulu te faire ken par les re... \n", "... ... \n", "4009 vos twt rappel l'époque ou les journalistes tr... \n", "4010 tres bien. le cinema francais c...est souvent ... \n", "4011 j’ai que des rebeus en demande d’amis aussi \n", "4012 sale juif de merde \n", "4014 mdr c’est un mongol lui en mode lui demander d... \n", "\n", " sentiment directness \\\n", "HITId \n", "1 abusive direct \n", "2 offensive indirect \n", "3 hateful direct \n", "6 offensive indirect \n", "9 offensive indirect \n", "... ... ... \n", "4009 offensive direct \n", "4010 offensive indirect \n", "4011 disrespectful_normal direct \n", "4012 offensive direct \n", "4014 offensive indirect \n", "\n", " annotator_sentiment target group \n", "HITId \n", "1 shock origin other \n", "2 shock other individual \n", "3 anger_confusion_sadness_fear_disgust other women \n", "6 indifference other immigrants \n", "9 indifference_disgust other individual \n", "... ... ... ... \n", "4009 shock other jews \n", "4010 sadness other left_wing_people \n", "4011 indifference origin arabs \n", "4012 fear_shock_indifference_sadness_disgust religion jews \n", "4014 indifference disability individual \n", "\n", "[3193 rows x 6 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mlma_df.tweet = mlma_df.tweet.apply(lambda x: re.sub(user_naming_pattern, \"\", x).strip())\n", "\n", "mlma_abuse_df = mlma_df \\\n", " .loc[mlma_df.sentiment != \"normal\"]\n", "\n", "mlma_no_abuse_df = mlma_df \\\n", " .loc[mlma_df.sentiment == \"normal\"]\n", "\n", "mlma_abuse_df" ] }, { "cell_type": "code", "execution_count": 17, "id": "e227676c", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_17576/1118330829.py:12: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " pruned_mlma_abuse.tweet = pruned_mlma_abuse.tweet.apply(clean_text)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tweetsentimentdirectnessannotator_sentimenttargetgroup
HITId
1personnage ainsi q tte la clique gauchiste de...abusivedirectshockoriginother
2bah oui t'as raison l'autre c'est un mongol.offensiveindirectshockotherindividual
6en algerie les migrants sont expulsés dans le ...offensiveindirectindifferenceotherimmigrants
9mytho t'as juste voulu te faire ken par les re...offensiveindirectindifference_disgustotherindividual
10c’est un giga attardé mdrrr ils va vraiment se...offensivedirectindifferenceoriginindividual
.....................
4008pk tu mparles ching chong fils de puteoffensivedirectindifferenceoriginasians
4009vos twt rappel l'époque ou les journalistes tr...offensivedirectshockotherjews
4010tres bien. le cinema francais c...est souvent ...offensiveindirectsadnessotherleft_wing_people
4012sale juif de merdeoffensivedirectfear_shock_indifference_sadness_disgustreligionjews
4014mdr c’est un mongol lui en mode lui demander d...offensiveindirectindifferencedisabilityindividual
\n", "

1930 rows × 6 columns

\n", "
" ], "text/plain": [ " tweet sentiment \\\n", "HITId \n", "1 personnage ainsi q tte la clique gauchiste de... abusive \n", "2 bah oui t'as raison l'autre c'est un mongol. offensive \n", "6 en algerie les migrants sont expulsés dans le ... offensive \n", "9 mytho t'as juste voulu te faire ken par les re... offensive \n", "10 c’est un giga attardé mdrrr ils va vraiment se... offensive \n", "... ... ... \n", "4008 pk tu mparles ching chong fils de pute offensive \n", "4009 vos twt rappel l'époque ou les journalistes tr... offensive \n", "4010 tres bien. le cinema francais c...est souvent ... offensive \n", "4012 sale juif de merde offensive \n", "4014 mdr c’est un mongol lui en mode lui demander d... offensive \n", "\n", " directness annotator_sentiment target \\\n", "HITId \n", "1 direct shock origin \n", "2 indirect shock other \n", "6 indirect indifference other \n", "9 indirect indifference_disgust other \n", "10 direct indifference origin \n", "... ... ... ... \n", "4008 direct indifference origin \n", "4009 direct shock other \n", "4010 indirect sadness other \n", "4012 direct fear_shock_indifference_sadness_disgust religion \n", "4014 indirect indifference disability \n", "\n", " group \n", "HITId \n", "1 other \n", "2 individual \n", "6 immigrants \n", "9 individual \n", "10 individual \n", "... ... \n", "4008 asians \n", "4009 jews \n", "4010 left_wing_people \n", "4012 jews \n", "4014 individual \n", "\n", "[1930 rows x 6 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def clean_text(text):\n", " \n", " out = text.replace(\"rt \", \"\")\n", " out = out.replace(\"\\xa0\", \"\")\n", " for w in out.split():\n", " if \"…\" in w:\n", " out = out.replace(w, \"\")\n", " return out\n", "\n", "target_categories = [\"abusive\", \"offensive\"]\n", "pruned_mlma_abuse = mlma_abuse_df.loc[mlma_abuse_df.sentiment.isin(target_categories)]\n", "pruned_mlma_abuse.tweet = pruned_mlma_abuse.tweet.apply(clean_text)\n", "pruned_mlma_abuse" ] }, { "cell_type": "code", "execution_count": 28, "id": "db79bea5", "metadata": { "scrolled": true }, "outputs": [], "source": [ "pruned_mlma_abuse.to_csv(os.path.join(output_dir, \"mlma_positive.csv\"))\n", "mlma_no_abuse_df.to_csv(os.path.join(output_dir, \"mlma_negative.csv\"))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 5 }