{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "c6cadd34", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import glob" ] }, { "cell_type": "code", "execution_count": 2, "id": "4ce0c480", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Filenames :\n", "../../data/processed/uc-berkeley-measuring-hate-speech-negative-translated.csv\n", "../../data/processed/caa_negative.csv\n", "../../data/processed/caa_positive.csv\n", "../../data/processed/ftr_dataset_negative.csv\n", "../../data/processed/mlma_negative.csv\n", "../../data/processed/merged_datasets.csv\n", "../../data/processed/mlma_positive.csv\n", "../../data/processed/ftr_dataset_positive.csv\n", "../../data/processed/uc-berkeley-measuring-hate-speech-positive-translated.csv\n", "\n", "Columns:\n", "['Unnamed: 2']\n", "['tweet' 'sentiment' 'directness' 'annotator_sentiment' 'target' 'group']\n", "['tweet' 'label' 'tweet_clean']\n", "['translated' 'hate_speech_score' 'translated_clean' 'label']\n", "['translated' 'hate_speech_score' 'translated_clean' 'label']\n", "['Unnamed: 2']\n", "['tweet' 'label' 'tweet_clean']\n", "['tweet' 'sentiment' 'directness' 'annotator_sentiment' 'target' 'group']\n", "['text']\n" ] } ], "source": [ "input_dir = \"../../data/processed/\"\n", "output_dir = \"../../data/processed/\"\n", "\n", "filenames = glob.glob(input_dir + \"*\")\n", "\n", "print(\"Filenames :\")\n", "pos, neg = [], []\n", "for filename in filenames:\n", " print(filename)\n", " if \"positive\" in filename:\n", " pos.append(pd.read_csv(filename, index_col=[0]))\n", " else:\n", " neg.append(pd.read_csv(filename, index_col=[0]))\n", " \n", "print()\n", "print(\"Columns:\")\n", "for pos_df in pos:\n", " print(pos_df.columns.values)\n", " \n", "for neg_df in neg:\n", " print(neg_df.columns.values)" ] }, { "cell_type": "code", "execution_count": 3, "id": "ef7ee207", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Positive : 5011\n", "Negative : 31378\n" ] } ], "source": [ "for pos_df in pos:\n", " if \"Unnamed: 2\" in pos_df.columns:\n", " pos_df.rename({\"Unnamed: 2\" : \"text\"}, inplace=True, axis=1)\n", " elif \"tweet_clean\" in pos_df.columns:\n", " pos_df.rename({\"tweet_clean\" : \"text\"}, inplace=True, axis=1)\n", " elif 'translated_clean' in pos_df.columns:\n", " pos_df.rename({\"translated_clean\" : \"text\"}, inplace=True, axis=1)\n", " elif \"tweet\" in pos_df.columns:\n", " pos_df.rename({\"tweet\" : \"text\"}, inplace=True, axis=1)\n", " \n", "for neg_df in neg:\n", " if \"Unnamed: 2\" in neg_df.columns:\n", " neg_df.rename({\"Unnamed: 2\" : \"text\"}, inplace=True, axis=1)\n", " elif \"tweet_clean\" in neg_df.columns:\n", " neg_df.rename({\"tweet_clean\" : \"text\"}, inplace=True, axis=1)\n", " elif 'translated_clean' in neg_df.columns:\n", " neg_df.rename({\"translated_clean\" : \"text\"}, inplace=True, axis=1)\n", " elif \"tweet\" in neg_df.columns:\n", " neg_df.rename({\"tweet\" : \"text\"}, inplace=True, axis=1)\n", " \n", "pos = pd.concat(pos)[[\"text\"]]\n", "pos[\"label\"] = 1\n", "neg = pd.concat(neg)[[\"text\"]]\n", "neg[\"label\"] = 0\n", "\n", "print(\"Positive :\", pos.shape[0])\n", "print(\"Negative :\", neg.shape[0])" ] }, { "cell_type": "code", "execution_count": 4, "id": "3ec5fa31", "metadata": {}, "outputs": [], "source": [ "merged = pd.concat([pos, neg])\n", "merged.to_csv(os.path.join(output_dir, \"merged_datasets.csv\"))" ] }, { "cell_type": "code", "execution_count": null, "id": "9fe7d6ab", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "fd896f4c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "sexism_detection", "language": "python", "name": "sexism_detection" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 5 }