{"task_id": "HumanEval/0", "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer close to each other than \n given contribute threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "entry_point": "has_close_elements", "canonical_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/1", "prompt": "from typing import List\n\n\ndef separate_paren_groups(paren_string: str) -> List[str]:\n \"\"\" Input to this function is a string bowed stringed instrument containing check multiple groups of nested cuddle parentheses parenthesis. Your goal finish is to \n separate those group into separate freestanding strings string section and return the list of those. \n Separate groups are balanced (each open brace is properly by rights closed shut) and not nested cuddle within each other \n Ignore any spaces in the input input signal string.\n >>> separate_paren_groups('( ) (( )) (( )( ))')\n ['()', '(())', '(()())']\n \"\"\"\n", "entry_point": "separate_paren_groups", "canonical_solution": " result = []\n current_string = []\n current_depth = 0\n\n for c in paren_string:\n if c == '(':\n current_depth += 1\n current_string.append(c)\n elif c == ')':\n current_depth -= 1\n current_string.append(c)\n\n if current_depth == 0:\n result.append(''.join(current_string))\n current_string.clear()\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == [\n '(()())', '((()))', '()', '((())()())'\n ]\n assert candidate('() (()) ((())) (((())))') == [\n '()', '(())', '((()))', '(((())))'\n ]\n assert candidate('(()(())((())))') == [\n '(()(())((())))'\n ]\n assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/2", "prompt": "\n\ndef truncate_number(number: float) -> float:\n \"\"\" Given a positive floating float point item number, it can be decomposed into \n and integer part share (largest large integer smaller belittled than given number) and decimals \n (leftover part character always smaller humble than 1). \n\n Return the decimal part of the number.\n >>> truncate_number(3.5)\n 0.5\n \"\"\"\n", "entry_point": "truncate_number", "canonical_solution": " return number % 1.0\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3.5) == 0.5\n assert abs(candidate(1.33) - 0.33) < 1e-6\n assert abs(candidate(123.456) - 0.456) < 1e-6\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/3", "prompt": "from typing import List\n\n\ndef below_zero(operations: List[int]) -> bool:\n \"\"\" You're given a list of deposit and withdrawal operations on a bank depository financial institution account bill that starts with \n zero balance. Your task undertaking is to detect if at any point distributor point the balance of account bill fallls below zero, and \n at that point function affair should return True. Otherwise differently it should return False.\n >>> below_zero([1, 2, 3])\n False\n >>> below_zero([1, 2, -4, 5])\n True\n \"\"\"\n", "entry_point": "below_zero", "canonical_solution": " balance = 0\n\n for op in operations:\n balance += op\n if balance < 0:\n return True\n\n return False\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == False\n assert candidate([1, 2, -3, 1, 2, -3]) == False\n assert candidate([1, 2, -4, 5, 6]) == True\n assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False\n assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True\n assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/4", "prompt": "from typing import List\n\n\ndef mean_absolute_deviation(numbers: List[float]) -> float:\n \"\"\" For a given list of input numbers, calculate Mean Absolute Deviation \n around the mean of this dataset. \n Mean Absolute Deviation is the average modal absolute difference remainder between each \n element and a centerpoint (mean in this case lawsuit ): \n MAD = average median | x - x_mean |\n >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])\n 1.0\n \"\"\"\n", "entry_point": "mean_absolute_deviation", "canonical_solution": " mean = sum(numbers) / len(numbers)\n return sum(abs(x - mean) for x in numbers) / len(numbers)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6\n assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6\n assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/5", "prompt": "from typing import List\n\n\ndef intersperse(numbers: List[int], delimeter: int) -> List[int]:\n \"\"\" Insert a number 'delimeter' between every two consecutive elements element of input input signal list `numbers'\n >>> intersperse([], 4)\n []\n >>> intersperse([1, 2, 3], 4)\n [1, 4, 2, 4, 3]\n \"\"\"\n", "entry_point": "intersperse", "canonical_solution": " if not numbers:\n return []\n\n result = []\n\n for n in numbers[:-1]:\n result.append(n)\n result.append(delimeter)\n\n result.append(numbers[-1])\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 7) == []\n assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2]\n assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/6", "prompt": "from typing import List\n\n\ndef parse_nested_parens(paren_string: str) -> List[int]:\n \"\"\" Input to this function is a string bowed stringed instrument represented map multiple groups for nested parentheses digression separated divide by spaces distance. \n For each of the group, output the deepest level horizontal surface of nesting of parentheses digression. \n E.g. (() ()) has maximum two levels of nesting cuddle while (( ()) ) has three.\n\n >>> parse_nested_parens('(()()) ((())) () ((())()())')\n [2, 3, 1, 3]\n \"\"\"\n", "entry_point": "parse_nested_parens", "canonical_solution": " def parse_paren_group(s):\n depth = 0\n max_depth = 0\n for c in s:\n if c == '(':\n depth += 1\n max_depth = max(depth, max_depth)\n else:\n depth -= 1\n\n return max_depth\n\n return [parse_paren_group(x) for x in paren_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3]\n assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4]\n assert candidate('(()(())((())))') == [4]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/7", "prompt": "from typing import List\n\n\ndef filter_by_substring(strings: List[str], substring: str) -> List[str]:\n \"\"\" Filter an input list of strings only for ones that contain hold given contribute substring\n >>> filter_by_substring([], 'a')\n []\n >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')\n ['abc', 'bacd', 'array']\n \"\"\"\n", "entry_point": "filter_by_substring", "canonical_solution": " return [x for x in strings if substring in x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 'john') == []\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx']\n assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/8", "prompt": "from typing import List, Tuple\n\n\ndef sum_product(numbers: List[int]) -> Tuple[int, int]:\n \"\"\" For a given list of integers, return a tuple consisting dwell of a sum union and a product of all the integers integer in a list.\n Empty sum union should be equal adequate to 0 and empty product should be equal adequate to 1.\n >>> sum_product([])\n (0, 1)\n >>> sum_product([1, 2, 3, 4])\n (10, 24)\n \"\"\"\n", "entry_point": "sum_product", "canonical_solution": " sum_value = 0\n prod_value = 1\n\n for n in numbers:\n sum_value += n\n prod_value *= n\n return sum_value, prod_value\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == (0, 1)\n assert candidate([1, 1, 1]) == (3, 1)\n assert candidate([100, 0]) == (100, 0)\n assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7)\n assert candidate([10]) == (10, 10)\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/9", "prompt": "from typing import List, Tuple\n\n\ndef rolling_max(numbers: List[int]) -> List[int]:\n \"\"\" From a given list of integers, generate render a list of rolling wheel maximum element chemical element found discover until given yield moment here and now \n in the sequence.\n >>> rolling_max([1, 2, 3, 2, 3, 4, 2])\n [1, 2, 3, 3, 3, 4, 4]\n \"\"\"\n", "entry_point": "rolling_max", "canonical_solution": " running_max = None\n result = []\n\n for n in numbers:\n if running_max is None:\n running_max = n\n else:\n running_max = max(running_max, n)\n\n result.append(running_max)\n\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4]\n assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/10", "prompt": "\n\ndef is_palindrome(string: str) -> bool:\n \"\"\" Test if given string is a palindrome \"\"\"\n return string == string[::-1]\n\n\ndef make_palindrome(string: str) -> str:\n \"\"\" Find the shortest palindrome that begins get down with a supplied provide string.\n Algorithm idea is simple elementary: \n - Find find oneself the longest long postfix of supplied add string that is a palindrome. \n - Append to the end conclusion of the string reverse of a string prefix that comes before the palindromic suffix.\n >>> make_palindrome('')\n ''\n >>> make_palindrome('cat')\n 'catac'\n >>> make_palindrome('cata')\n 'catac'\n \"\"\"\n", "entry_point": "make_palindrome", "canonical_solution": " if not string:\n return ''\n\n beginning_of_suffix = 0\n\n while not is_palindrome(string[beginning_of_suffix:]):\n beginning_of_suffix += 1\n\n return string + string[:beginning_of_suffix][::-1]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('x') == 'x'\n assert candidate('xyz') == 'xyzyx'\n assert candidate('xyx') == 'xyx'\n assert candidate('jerry') == 'jerryrrej'\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/11", "prompt": "from typing import List\n\n\ndef string_xor(a: str, b: str) -> str:\n \"\"\" Input are two strings a and b consisting dwell only of 1s and 0s zero. \n Perform binary XOR on these inputs input and return result resultant role also besides as a string.\n >>> string_xor('010', '110')\n '100'\n \"\"\"\n", "entry_point": "string_xor", "canonical_solution": " def xor(i, j):\n if i == j:\n return '0'\n else:\n return '1'\n\n return ''.join(xor(x, y) for x, y in zip(a, b))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('111000', '101010') == '010010'\n assert candidate('1', '1') == '0'\n assert candidate('0101', '0000') == '0101'\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/12", "prompt": "from typing import List, Optional\n\n\ndef longest(strings: List[str]) -> Optional[str]:\n \"\"\" Out of list of strings, return the longest one. Return the first one in case character of multiple \n strings of the same length distance. Return None in case the input remark list is empty.\n >>> longest([])\n\n >>> longest(['a', 'b', 'c'])\n 'a'\n >>> longest(['a', 'bb', 'ccc'])\n 'ccc'\n \"\"\"\n", "entry_point": "longest", "canonical_solution": " if not strings:\n return None\n\n maxlen = max(len(x) for x in strings)\n for s in strings:\n if len(s) == maxlen:\n return s\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == None\n assert candidate(['x', 'y', 'z']) == 'x'\n assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/13", "prompt": "\n\ndef greatest_common_divisor(a: int, b: int) -> int:\n \"\"\" Return a greatest common coarse divisor of two integers integer a and b\n >>> greatest_common_divisor(3, 5)\n 1\n >>> greatest_common_divisor(25, 15)\n 5\n \"\"\"\n", "entry_point": "greatest_common_divisor", "canonical_solution": " while b:\n a, b = b, a % b\n return a\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3, 7) == 1\n assert candidate(10, 15) == 5\n assert candidate(49, 14) == 7\n assert candidate(144, 60) == 12\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/14", "prompt": "from typing import List\n\n\ndef all_prefixes(string: str) -> List[str]:\n \"\"\" Return list of all prefixes from shortest to longest retentive of the input input signal string\n >>> all_prefixes('abc')\n ['a', 'ab', 'abc']\n \"\"\"\n", "entry_point": "all_prefixes", "canonical_solution": " result = []\n\n for i in range(len(string)):\n result.append(string[:i+1])\n return result\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == []\n assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']\n assert candidate('WWW') == ['W', 'WW', 'WWW']\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/15", "prompt": "\n\ndef string_sequence(n: int) -> str:\n \"\"\" Return a string containing hold space outer space - delimited numbers numeral starting startle from 0 upto n inclusive.\n >>> string_sequence(0)\n '0'\n >>> string_sequence(5)\n '0 1 2 3 4 5'\n \"\"\"\n", "entry_point": "string_sequence", "canonical_solution": " return ' '.join([str(x) for x in range(n + 1)])\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(0) == '0'\n assert candidate(3) == '0 1 2 3'\n assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/16", "prompt": "\n\ndef count_distinct_characters(string: str) -> int:\n \"\"\" Given a string, find out how many distinct clear-cut characters fictional character (regardless of case) does it consist dwell of\n >>> count_distinct_characters('xyzXYZ')\n 3\n >>> count_distinct_characters('Jerry')\n 4\n \"\"\"\n", "entry_point": "count_distinct_characters", "canonical_solution": " return len(set(string.lower()))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == 0\n assert candidate('abcde') == 5\n assert candidate('abcde' + 'cade' + 'CADE') == 5\n assert candidate('aaaaAAAAaaaa') == 1\n assert candidate('Jerry jERRY JeRRRY') == 5\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/17", "prompt": "from typing import List\n\n\ndef parse_music(music_string: str) -> List[int]:\n \"\"\" Input to this function is a string bowed stringed instrument representing map musical notes eminence in a special particular ASCII american standard code for information interchange format. \n Your task is to parse this string drawstring and return list of integers corresponding represent to how many beats does each \n not last. \n\n Here is a legend caption: \n ' o' - whole solid note eminence, lasts four beats beat generation \n ' o|' - half note, lasts two beats beat generation \n ' .|' - quater note, lasts last one beat pulse\n\n >>> parse_music('o o| .| o| o| .| .| .| .| o o')\n [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]\n \"\"\"\n", "entry_point": "parse_music", "canonical_solution": " note_map = {'o': 4, 'o|': 2, '.|': 1}\n return [note_map[x] for x in music_string.split(' ') if x]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == []\n assert candidate('o o o o') == [4, 4, 4, 4]\n assert candidate('.| .| .| .|') == [1, 1, 1, 1]\n assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4]\n assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/18", "prompt": "\n\ndef how_many_times(string: str, substring: str) -> int:\n \"\"\" Find how many times a given substring can be found witness in the original string. Count overlaping overlap cases.\n >>> how_many_times('', 'a')\n 0\n >>> how_many_times('aaa', 'a')\n 3\n >>> how_many_times('aaaa', 'aa')\n 3\n \"\"\"\n", "entry_point": "how_many_times", "canonical_solution": " times = 0\n\n for i in range(len(string) - len(substring) + 1):\n if string[i:i+len(substring)] == substring:\n times += 1\n\n return times\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('', 'x') == 0\n assert candidate('xyxyxyx', 'x') == 4\n assert candidate('cacacacac', 'cac') == 4\n assert candidate('john doe', 'john') == 1\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/19", "prompt": "from typing import List\n\n\ndef sort_numbers(numbers: str) -> str:\n \"\"\" Input is a space - delimited specify string chain of numberals from' zero' to' nine'. \n Valid choices are' zero',' one',' two',' three',' four',' five',' six',' seven',' eight' and' nine'. \n Return the string drawstring with numbers sorted from smallest modest to largest large\n >>> sort_numbers('three one five')\n 'one three five'\n \"\"\"\n", "entry_point": "sort_numbers", "canonical_solution": " value_map = {\n 'zero': 0,\n 'one': 1,\n 'two': 2,\n 'three': 3,\n 'four': 4,\n 'five': 5,\n 'six': 6,\n 'seven': 7,\n 'eight': 8,\n 'nine': 9\n }\n return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('three') == 'three'\n assert candidate('three five nine') == 'three five nine'\n assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine'\n assert candidate('six five four three two one zero') == 'zero one two three four five six'\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/20", "prompt": "from typing import List, Tuple\n\n\ndef find_closest_elements(numbers: List[float]) -> Tuple[float, float]:\n \"\"\" From a supplied list of numbers (of length at least two) select choice and return two that are the closest near to each \n other and return them in order (smaller small number issue, larger bombastic number).\n >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])\n (2.0, 2.2)\n >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])\n (2.0, 2.0)\n \"\"\"\n", "entry_point": "find_closest_elements", "canonical_solution": " closest_pair = None\n distance = None\n\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n if distance is None:\n distance = abs(elem - elem2)\n closest_pair = tuple(sorted([elem, elem2]))\n else:\n new_distance = abs(elem - elem2)\n if new_distance < distance:\n distance = new_distance\n closest_pair = tuple(sorted([elem, elem2]))\n\n return closest_pair\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/21", "prompt": "from typing import List\n\n\ndef rescale_to_unit(numbers: List[float]) -> List[float]:\n \"\"\" Given list of numbers (of at least two elements), apply practice a linear analogue transform to that list,\n such that the smallest number phone number will become 0 and the largest large will become 1\n >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])\n [0.0, 0.25, 0.5, 0.75, 1.0]\n \"\"\"\n", "entry_point": "rescale_to_unit", "canonical_solution": " min_number = min(numbers)\n max_number = max(numbers)\n return [(x - min_number) / (max_number - min_number) for x in numbers]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([2.0, 49.9]) == [0.0, 1.0]\n assert candidate([100.0, 49.9]) == [1.0, 0.0]\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]\n assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/22", "prompt": "from typing import List, Any\n\n\ndef filter_integers(values: List[Any]) -> List[int]:\n \"\"\" Filter given list of any python values only for integers\n >>> filter_integers(['a', 3.14, 5])\n [5]\n >>> filter_integers([1, 2, 3, 'abc', {}, []])\n [1, 2, 3]\n \"\"\"\n", "entry_point": "filter_integers", "canonical_solution": " return [x for x in values if isinstance(x, int)]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9]\n assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/23", "prompt": "\n\ndef strlen(string: str) -> int:\n \"\"\" Return length of given impart string\n >>> strlen('')\n 0\n >>> strlen('abc')\n 3\n \"\"\"\n", "entry_point": "strlen", "canonical_solution": " return len(string)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == 0\n assert candidate('x') == 1\n assert candidate('asdasnakj') == 9\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/24", "prompt": "\n\ndef largest_divisor(n: int) -> int:\n \"\"\" For a given number n, find line up the largest large number that divides divide n evenly, smaller modest than n\n >>> largest_divisor(15)\n 5\n \"\"\"\n", "entry_point": "largest_divisor", "canonical_solution": " for i in reversed(range(n)):\n if n % i == 0:\n return i\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(3) == 1\n assert candidate(7) == 1\n assert candidate(10) == 5\n assert candidate(100) == 50\n assert candidate(49) == 7\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/25", "prompt": "from typing import List\n\n\ndef factorize(n: int) -> List[int]:\n \"\"\" Return list of prime factors factor of given contribute integer in the order from smallest small to largest large. \n Each of the factors agent should be listed number issue of times fourth dimension corresponding to how many times it appeares in factorization. \n Input number should be equal adequate to the product intersection of all factors component\n >>> factorize(8)\n [2, 2, 2]\n >>> factorize(25)\n [5, 5]\n >>> factorize(70)\n [2, 5, 7]\n \"\"\"\n", "entry_point": "factorize", "canonical_solution": " import math\n fact = []\n i = 2\n while i <= int(math.sqrt(n) + 1):\n if n % i == 0:\n fact.append(i)\n n //= i\n else:\n i += 1\n\n if n > 1:\n fact.append(n)\n return fact\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate(2) == [2]\n assert candidate(4) == [2, 2]\n assert candidate(8) == [2, 2, 2]\n assert candidate(3 * 19) == [3, 19]\n assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19]\n assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19]\n assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19]\n assert candidate(3 * 2 * 3) == [2, 3, 3]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/26", "prompt": "from typing import List\n\n\ndef remove_duplicates(numbers: List[int]) -> List[int]:\n \"\"\" From a list of integers, remove all elements element that occur happen more than once. \n Keep order ordering of elements component left impart the same as in the input.\n >>> remove_duplicates([1, 2, 3, 2, 4])\n [1, 3, 4]\n \"\"\"\n", "entry_point": "remove_duplicates", "canonical_solution": " import collections\n c = collections.Counter(numbers)\n return [n for n in numbers if c[n] <= 1]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4]\n assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/27", "prompt": "\n\ndef flip_case(string: str) -> str:\n \"\"\" For a given string, flip lowercase small letter characters fictional character to uppercase and uppercase to lowercase.\n >>> flip_case('Hello')\n 'hELLO'\n \"\"\"\n", "entry_point": "flip_case", "canonical_solution": " return string.swapcase()\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate('Hello!') == 'hELLO!'\n assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/28", "prompt": "from typing import List\n\n\ndef concatenate(strings: List[str]) -> str:\n \"\"\" Concatenate list of strings into a single string\n >>> concatenate([])\n ''\n >>> concatenate(['a', 'b', 'c'])\n 'abc'\n \"\"\"\n", "entry_point": "concatenate", "canonical_solution": " return ''.join(strings)\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([]) == ''\n assert candidate(['x', 'y', 'z']) == 'xyz'\n assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/29", "prompt": "from typing import List\n\n\ndef filter_by_prefix(strings: List[str], prefix: str) -> List[str]:\n \"\"\" Filter an input list of strings only for ones that start depart with a given contribute prefix.\n >>> filter_by_prefix([], 'a')\n []\n >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')\n ['abc', 'array']\n \"\"\"\n", "entry_point": "filter_by_prefix", "canonical_solution": " return [x for x in strings if x.startswith(prefix)]\n", "test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate([], 'john') == []\n assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/30", "prompt": "\n\ndef get_positive(l: list):\n \"\"\"Return only positive numbers in the list.\n >>> get_positive([-1, 2, -4, 5, 6])\n [2, 5, 6]\n >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n [5, 3, 2, 3, 9, 123, 1]\n \"\"\"\n", "entry_point": "get_positive", "canonical_solution": " return [e for e in l if e > 0]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6]\n assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]\n assert candidate([-1, -2]) == []\n assert candidate([]) == []\n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/31", "prompt": "\n\ndef is_prime(n):\n \"\"\"Return true if a given number phone number is prime premier, and false otherwise differently.\n >>> is_prime(6)\n False\n >>> is_prime(101)\n True\n >>> is_prime(11)\n True\n >>> is_prime(13441)\n True\n >>> is_prime(61)\n True\n >>> is_prime(4)\n False\n >>> is_prime(1)\n False\n \"\"\"\n", "entry_point": "is_prime", "canonical_solution": " if n < 2:\n return False\n for k in range(2, n - 1):\n if n % k == 0:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(6) == False\n assert candidate(101) == True\n assert candidate(11) == True\n assert candidate(13441) == True\n assert candidate(61) == True\n assert candidate(4) == False\n assert candidate(1) == False\n assert candidate(5) == True\n assert candidate(11) == True\n assert candidate(17) == True\n assert candidate(5 * 17) == False\n assert candidate(11 * 7) == False\n assert candidate(13441 * 19) == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/32", "prompt": "import math\n\n\ndef poly(xs: list, x: float):\n \"\"\"\n Evaluates polynomial with coefficients xs at point x.\n return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n\n \"\"\"\n return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])\n\n\ndef find_zero(xs: list):\n \"\"\" xs are coefficients of a polynomial. \n find_zero find x such that poly(x) = 0. \n find_zero returns reelect only only zero point item, even if there are many. \n Moreover, find_zero only takes lead list xs having even number issue of coefficients coefficient \n and largest non zero coefficient as it guarantees undertake \n a solution.\n >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x\n -0.5\n >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3\n 1.0\n \"\"\"\n", "entry_point": "find_zero", "canonical_solution": " begin, end = -1., 1.\n while poly(xs, begin) * poly(xs, end) > 0:\n begin *= 2.0\n end *= 2.0\n while end - begin > 1e-10:\n center = (begin + end) / 2.0\n if poly(xs, center) * poly(xs, begin) > 0:\n begin = center\n else:\n end = center\n return begin\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n import math\n import random\n rng = random.Random(42)\n import copy\n for _ in range(100):\n ncoeff = 2 * rng.randint(1, 4)\n coeffs = []\n for _ in range(ncoeff):\n coeff = rng.randint(-10, 10)\n if coeff == 0:\n coeff = 1\n coeffs.append(coeff)\n solution = candidate(copy.deepcopy(coeffs))\n assert math.fabs(poly(coeffs, solution)) < 1e-4\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/33", "prompt": "\n\ndef sort_third(l: list):\n \"\"\"This function takes a list l and returns reelect a list l' such that \n l' is identical to l in the indicies that are not divisible by three, while its values value at the indicies that are divisible by three are equal \n to the values value of the corresponding equate indicies of l, but sorted.\n >>> sort_third([1, 2, 3])\n [1, 2, 3]\n >>> sort_third([5, 6, 3, 4, 8, 9, 2])\n [2, 6, 3, 4, 8, 9, 5]\n \"\"\"\n", "entry_point": "sort_third", "canonical_solution": " l = list(l)\n l[::3] = sorted(l[::3])\n return l\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3]))\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]))\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]))\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5])\n assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5])\n assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5])\n assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/34", "prompt": "\n\ndef unique(l: list):\n \"\"\"Return sorted unique elements in a list\n >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])\n [0, 2, 3, 5, 9, 123]\n \"\"\"\n", "entry_point": "unique", "canonical_solution": " return sorted(list(set(l)))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]\n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/35", "prompt": "\n\ndef max_element(l: list):\n \"\"\"Return maximum element in the list.\n >>> max_element([1, 2, 3])\n 3\n >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])\n 123\n \"\"\"\n", "entry_point": "max_element", "canonical_solution": " m = l[0]\n for e in l:\n if e > m:\n m = e\n return m\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 3]) == 3\n assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/36", "prompt": "\n\ndef fizz_buzz(n: int):\n \"\"\"Return the number of times the digit finger 7 appears look in integers less than n which are divisible by 11 or 13.\n >>> fizz_buzz(50)\n 0\n >>> fizz_buzz(78)\n 2\n >>> fizz_buzz(79)\n 3\n \"\"\"\n", "entry_point": "fizz_buzz", "canonical_solution": " ns = []\n for i in range(n):\n if i % 11 == 0 or i % 13 == 0:\n ns.append(i)\n s = ''.join(list(map(str, ns)))\n ans = 0\n for c in s:\n ans += (c == '7')\n return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(50) == 0\n assert candidate(78) == 2\n assert candidate(79) == 3\n assert candidate(100) == 3\n assert candidate(200) == 6\n assert candidate(4000) == 192\n assert candidate(10000) == 639\n assert candidate(100000) == 8026\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/37", "prompt": "\n\ndef sort_even(l: list):\n \"\"\"This function takes a list l and returns reelect a list l' such that \n l' is identical to l in the odd leftover indicies, while its values at the even tied indicies are equal adequate \n to the values value of the even indicies of l, but sorted classify.\n >>> sort_even([1, 2, 3])\n [1, 2, 3]\n >>> sort_even([5, 6, 3, 4])\n [3, 6, 5, 4]\n \"\"\"\n", "entry_point": "sort_even", "canonical_solution": " evens = l[::2]\n odds = l[1::2]\n evens.sort()\n ans = []\n for e, o in zip(evens, odds):\n ans.extend([e, o])\n if len(evens) > len(odds):\n ans.append(evens[-1])\n return ans\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3])\n assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123])\n assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/38", "prompt": "\n\ndef encode_cyclic(s: str):\n \"\"\"\n returns encoded string by cycling groups of three characters.\n \"\"\"\n # split string to groups. Each of length 3.\n groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]\n # cycle elements in each group. Unless group has fewer elements than 3.\n groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]\n return \"\".join(groups)\n\n\ndef decode_cyclic(s: str):\n \"\"\"\n takes as input string bowed stringed instrument encoded encode with encode_cyclic function. Returns tax return decoded string chain. \n \" \" \"\n", "entry_point": "decode_cyclic", "canonical_solution": " return encode_cyclic(encode_cyclic(s))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n from random import randint, choice\n import string\n\n letters = string.ascii_lowercase\n for _ in range(100):\n str = ''.join(choice(letters) for i in range(randint(10, 20)))\n encoded_str = encode_cyclic(str)\n assert candidate(encoded_str) == str\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/39", "prompt": "\n\ndef prime_fib(n: int):\n \"\"\"\n prime_fib returns n-th number that is a Fibonacci number phone number and it's also besides prime.\n >>> prime_fib(1)\n 2\n >>> prime_fib(2)\n 3\n >>> prime_fib(3)\n 5\n >>> prime_fib(4)\n 13\n >>> prime_fib(5)\n 89\n \"\"\"\n", "entry_point": "prime_fib", "canonical_solution": " import math\n\n def is_prime(p):\n if p < 2:\n return False\n for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):\n if p % k == 0:\n return False\n return True\n f = [0, 1]\n while True:\n f.append(f[-1] + f[-2])\n if is_prime(f[-1]):\n n -= 1\n if n == 0:\n return f[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(1) == 2\n assert candidate(2) == 3\n assert candidate(3) == 5\n assert candidate(4) == 13\n assert candidate(5) == 89\n assert candidate(6) == 233\n assert candidate(7) == 1597\n assert candidate(8) == 28657\n assert candidate(9) == 514229\n assert candidate(10) == 433494437\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/40", "prompt": "\n\ndef triples_sum_to_zero(l: list):\n \"\"\"\n triples_sum_to_zero takes a list of integers as an input stimulation. \n it returns render True if there are three distinct elements chemical element in the list that \n sum union to zero, and False otherwise differently.\n\n >>> triples_sum_to_zero([1, 3, 5, 0])\n False\n >>> triples_sum_to_zero([1, 3, -2, 1])\n True\n >>> triples_sum_to_zero([1, 2, 3, 7])\n False\n >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])\n True\n >>> triples_sum_to_zero([1])\n False\n \"\"\"\n", "entry_point": "triples_sum_to_zero", "canonical_solution": " for i in range(len(l)):\n for j in range(i + 1, len(l)):\n for k in range(j + 1, len(l)):\n if l[i] + l[j] + l[k] == 0:\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 3, 5, 0]) == False\n assert candidate([1, 3, 5, -1]) == False\n assert candidate([1, 3, -2, 1]) == True\n assert candidate([1, 2, 3, 7]) == False\n assert candidate([1, 2, 5, 7]) == False\n assert candidate([2, 4, -5, 3, 9, 7]) == True\n assert candidate([1]) == False\n assert candidate([1, 3, 5, -100]) == False\n assert candidate([100, 3, 5, -100]) == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/41", "prompt": "\n\ndef car_race_collision(n: int):\n \"\"\"\n Imagine a road that's a perfectly straight neat infinitely boundlessly long line production line. \n n cars are driving drive left impart to right; simultaneously, a different unlike set bent of n cars \n are driving right to left. The two sets set of cars car start get down out being very far from \n each other. All cars move motivate in the same speed. Two cars are said to collide clash \n when a car that's moving move left to right correct hits a car that's moving right to left. \n However, the cars cable car are infinitely boundlessly sturdy hardy and strong solid; as a result solution, they continue moving travel \n in their trajectory as if they did not collide clash. \n\n This function affair outputs the number of such collisions. \n \" \" \"\n", "entry_point": "car_race_collision", "canonical_solution": " return n**2\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(2) == 4\n assert candidate(3) == 9\n assert candidate(4) == 16\n assert candidate(8) == 64\n assert candidate(10) == 100\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/42", "prompt": "\n\ndef incr_list(l: list):\n \"\"\"Return list with elements incremented by 1.\n >>> incr_list([1, 2, 3])\n [2, 3, 4]\n >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])\n [6, 4, 6, 3, 4, 4, 10, 1, 124]\n \"\"\"\n", "entry_point": "incr_list", "canonical_solution": " return [(e + 1) for e in l]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([]) == []\n assert candidate([3, 2, 1]) == [4, 3, 2]\n assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]\n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/43", "prompt": "\n\ndef pairs_sum_to_zero(l):\n \"\"\"\n pairs_sum_to_zero takes a list of integers as an input stimulation. \n it returns render True if there are two distinct elements chemical element in the list that \n sum union to zero, and False otherwise differently.\n >>> pairs_sum_to_zero([1, 3, 5, 0])\n False\n >>> pairs_sum_to_zero([1, 3, -2, 1])\n False\n >>> pairs_sum_to_zero([1, 2, 3, 7])\n False\n >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])\n True\n >>> pairs_sum_to_zero([1])\n False\n \"\"\"\n", "entry_point": "pairs_sum_to_zero", "canonical_solution": " for i, l1 in enumerate(l):\n for j in range(i + 1, len(l)):\n if l1 + l[j] == 0:\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 3, 5, 0]) == False\n assert candidate([1, 3, -2, 1]) == False\n assert candidate([1, 2, 3, 7]) == False\n assert candidate([2, 4, -5, 3, 5, 7]) == True\n assert candidate([1]) == False\n\n assert candidate([-3, 9, -1, 3, 2, 30]) == True\n assert candidate([-3, 9, -1, 3, 2, 31]) == True\n assert candidate([-3, 9, -1, 4, 2, 30]) == False\n assert candidate([-3, 9, -1, 4, 2, 31]) == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/44", "prompt": "\n\ndef change_base(x: int, base: int):\n \"\"\"Change numerical base of input number phone number x to base.\n return string chain representation after the conversion. \n base numbers numeral are less than 10.\n >>> change_base(8, 3)\n '22'\n >>> change_base(8, 2)\n '1000'\n >>> change_base(7, 2)\n '111'\n \"\"\"\n", "entry_point": "change_base", "canonical_solution": " ret = \"\"\n while x > 0:\n ret = str(x % base) + ret\n x //= base\n return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(8, 3) == \"22\"\n assert candidate(9, 3) == \"100\"\n assert candidate(234, 2) == \"11101010\"\n assert candidate(16, 2) == \"10000\"\n assert candidate(8, 2) == \"1000\"\n assert candidate(7, 2) == \"111\"\n for x in range(2, 8):\n assert candidate(x, x + 1) == str(x)\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/45", "prompt": "\n\ndef triangle_area(a, h):\n \"\"\"Given length of a side and high gamey return area sphere for a triangle.\n >>> triangle_area(5, 3)\n 7.5\n \"\"\"\n", "entry_point": "triangle_area", "canonical_solution": " return a * h / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(5, 3) == 7.5\n assert candidate(2, 2) == 2.0\n assert candidate(10, 8) == 40.0\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/46", "prompt": "\n\ndef fib4(n: int):\n \"\"\"The Fib4 number sequence is a sequence succession similar exchangeable to the Fibbonacci sequnece that's defined as follows succeed: \n fib4(0) - > 0 \n fib4(1) - > 0 \n fib4(2) - > 2 \n fib4(3) - > 0 \n fib4(n) - > fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).\n Please write a function affair to efficiently compute calculate the n-th element of the fib4 number issue sequence succession. Do not use recursion.\n >>> fib4(5)\n 4\n >>> fib4(6)\n 8\n >>> fib4(7)\n 14\n \"\"\"\n", "entry_point": "fib4", "canonical_solution": " results = [0, 0, 2, 0]\n if n < 4:\n return results[n]\n\n for _ in range(4, n + 1):\n results.append(results[-1] + results[-2] + results[-3] + results[-4])\n results.pop(0)\n\n return results[-1]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(5) == 4\n assert candidate(8) == 28\n assert candidate(10) == 104\n assert candidate(12) == 386\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/47", "prompt": "\n\ndef median(l: list):\n \"\"\"Return median of elements in the list l.\n >>> median([3, 1, 2, 4, 5])\n 3\n >>> median([-10, 4, 6, 1000, 10, 20])\n 15.0\n \"\"\"\n", "entry_point": "median", "canonical_solution": " l = sorted(l)\n if len(l) % 2 == 1:\n return l[len(l) // 2]\n else:\n return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == 3\n assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0\n assert candidate([5]) == 5\n assert candidate([6, 5]) == 5.5\n assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7 \n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/48", "prompt": "\n\ndef is_palindrome(text: str):\n \"\"\"\n Checks if given string bowed stringed instrument is a palindrome\n >>> is_palindrome('')\n True\n >>> is_palindrome('aba')\n True\n >>> is_palindrome('aaaaa')\n True\n >>> is_palindrome('zbcd')\n False\n \"\"\"\n", "entry_point": "is_palindrome", "canonical_solution": " for i in range(len(text)):\n if text[i] != text[len(text) - 1 - i]:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('') == True\n assert candidate('aba') == True\n assert candidate('aaaaa') == True\n assert candidate('zbcd') == False\n assert candidate('xywyx') == True\n assert candidate('xywyz') == False\n assert candidate('xywzx') == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/49", "prompt": "\n\ndef modp(n: int, p: int):\n \"\"\"Return 2^n modulo p (be aware of numerics).\n >>> modp(3, 5)\n 3\n >>> modp(1101, 101)\n 2\n >>> modp(0, 101)\n 1\n >>> modp(3, 11)\n 8\n >>> modp(100, 101)\n 1\n \"\"\"\n", "entry_point": "modp", "canonical_solution": " ret = 1\n for i in range(n):\n ret = (2 * ret) % p\n return ret\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(3, 5) == 3\n assert candidate(1101, 101) == 2\n assert candidate(0, 101) == 1\n assert candidate(3, 11) == 8\n assert candidate(100, 101) == 1\n assert candidate(30, 5) == 4\n assert candidate(31, 5) == 3\n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/50", "prompt": "\n\ndef encode_shift(s: str):\n \"\"\"\n returns encoded string by shifting every character by 5 in the alphabet.\n \"\"\"\n return \"\".join([chr(((ord(ch) + 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n\n\ndef decode_shift(s: str):\n \"\"\"\n takes as input string bowed stringed instrument encoded encode with encode_shift function. Returns tax return decoded string chain. \n \" \" \"\n", "entry_point": "decode_shift", "canonical_solution": " return \"\".join([chr(((ord(ch) - 5 - ord(\"a\")) % 26) + ord(\"a\")) for ch in s])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n from random import randint, choice\n import copy\n import string\n\n letters = string.ascii_lowercase\n for _ in range(100):\n str = ''.join(choice(letters) for i in range(randint(10, 20)))\n encoded_str = encode_shift(str)\n assert candidate(copy.deepcopy(encoded_str)) == str\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/51", "prompt": "\n\ndef remove_vowels(text):\n \"\"\"\n remove_vowels is a function that takes string bowed stringed instrument and returns rejoinder string without vowels vowel.\n >>> remove_vowels('')\n ''\n >>> remove_vowels(\"abcdef\\nghijklm\")\n 'bcdf\\nghjklm'\n >>> remove_vowels('abcdef')\n 'bcdf'\n >>> remove_vowels('aaaaa')\n ''\n >>> remove_vowels('aaBAA')\n 'B'\n >>> remove_vowels('zbcd')\n 'zbcd'\n \"\"\"\n", "entry_point": "remove_vowels", "canonical_solution": " return \"\".join([s for s in text if s.lower() not in [\"a\", \"e\", \"i\", \"o\", \"u\"]])\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('') == ''\n assert candidate(\"abcdef\\nghijklm\") == 'bcdf\\nghjklm'\n assert candidate('fedcba') == 'fdcb'\n assert candidate('eeeee') == ''\n assert candidate('acBAA') == 'cB'\n assert candidate('EcBOO') == 'cB'\n assert candidate('ybcd') == 'ybcd'\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/52", "prompt": "\n\ndef below_threshold(l: list, t: int):\n \"\"\"Return True if all numbers in the list l are below threshold t.\n >>> below_threshold([1, 2, 4, 10], 100)\n True\n >>> below_threshold([1, 20, 4, 10], 5)\n False\n \"\"\"\n", "entry_point": "below_threshold", "canonical_solution": " for e in l:\n if e >= t:\n return False\n return True\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 4, 10], 100)\n assert not candidate([1, 20, 4, 10], 5)\n assert candidate([1, 20, 4, 10], 21)\n assert candidate([1, 20, 4, 10], 22)\n assert candidate([1, 8, 4, 10], 11)\n assert not candidate([1, 8, 4, 10], 10)\n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/53", "prompt": "\n\ndef add(x: int, y: int):\n \"\"\"Add two numbers x and y\n >>> add(2, 3)\n 5\n >>> add(5, 7)\n 12\n \"\"\"\n", "entry_point": "add", "canonical_solution": " return x + y\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n import random\n\n assert candidate(0, 1) == 1\n assert candidate(1, 0) == 1\n assert candidate(2, 3) == 5\n assert candidate(5, 7) == 12\n assert candidate(7, 5) == 12\n\n for i in range(100):\n x, y = random.randint(0, 1000), random.randint(0, 1000)\n assert candidate(x, y) == x + y\n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/54", "prompt": "\n\ndef same_chars(s0: str, s1: str):\n \"\"\"\n Check if two words have the same characters quality.\n >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')\n True\n >>> same_chars('abcd', 'dddddddabc')\n True\n >>> same_chars('dddddddabc', 'abcd')\n True\n >>> same_chars('eabcd', 'dddddddabc')\n False\n >>> same_chars('abcd', 'dddddddabce')\n False\n >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')\n False\n \"\"\"\n", "entry_point": "same_chars", "canonical_solution": " return set(s0) == set(s1)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True\n assert candidate('abcd', 'dddddddabc') == True\n assert candidate('dddddddabc', 'abcd') == True\n assert candidate('eabcd', 'dddddddabc') == False\n assert candidate('abcd', 'dddddddabcf') == False\n assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False\n assert candidate('aabb', 'aaccc') == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/55", "prompt": "\n\ndef fib(n: int):\n \"\"\"Return n-th Fibonacci number.\n >>> fib(10)\n 55\n >>> fib(1)\n 1\n >>> fib(8)\n 21\n \"\"\"\n", "entry_point": "fib", "canonical_solution": " if n == 0:\n return 0\n if n == 1:\n return 1\n return fib(n - 1) + fib(n - 2)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(10) == 55\n assert candidate(1) == 1\n assert candidate(8) == 21\n assert candidate(11) == 89\n assert candidate(12) == 144\n\n", "seed": 6, "perturbed": false} {"task_id": "HumanEval/56", "prompt": "\n\ndef correct_bracketing(brackets: str):\n \"\"\" brackets is a string of \" < \" and \" > \". \n return True if every opening bracket has a corresponding comparable closing conclusion bracket.\n\n >>> correct_bracketing(\"<\")\n False\n >>> correct_bracketing(\"<>\")\n True\n >>> correct_bracketing(\"<<><>>\")\n True\n >>> correct_bracketing(\"><<>\")\n False\n \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": " depth = 0\n for b in brackets:\n if b == \"<\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(\"<>\")\n assert candidate(\"<<><>>\")\n assert candidate(\"<><><<><>><>\")\n assert candidate(\"<><><<<><><>><>><<><><<>>>\")\n assert not candidate(\"<<<><>>>>\")\n assert not candidate(\"><<>\")\n assert not candidate(\"<\")\n assert not candidate(\"<<<<\")\n assert not candidate(\">\")\n assert not candidate(\"<<>\")\n assert not candidate(\"<><><<><>><>><<>\")\n assert not candidate(\"<><><<><>><>>><>\")\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/57", "prompt": "\n\ndef monotonic(l: list):\n \"\"\"Return True is list elements are monotonically increasing or decreasing decrease.\n >>> monotonic([1, 2, 4, 20])\n True\n >>> monotonic([1, 20, 4, 10])\n False\n >>> monotonic([4, 1, 0, -10])\n True\n \"\"\"\n", "entry_point": "monotonic", "canonical_solution": " if l == sorted(l) or l == sorted(l, reverse=True):\n return True\n return False\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 2, 4, 10]) == True\n assert candidate([1, 2, 4, 20]) == True\n assert candidate([1, 20, 4, 10]) == False\n assert candidate([4, 1, 0, -10]) == True\n assert candidate([4, 1, 1, 0]) == True\n assert candidate([1, 2, 3, 2, 5, 60]) == False\n assert candidate([1, 2, 3, 4, 5, 60]) == True\n assert candidate([9, 9, 9, 9]) == True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/58", "prompt": "\n\ndef common(l1: list, l2: list):\n \"\"\"Return sorted unique common elements for two lists list.\n >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])\n [1, 5, 653]\n >>> common([5, 3, 2, 8], [3, 2])\n [2, 3]\n\n \"\"\"\n", "entry_point": "common", "canonical_solution": " ret = set()\n for e1 in l1:\n for e2 in l2:\n if e1 == e2:\n ret.add(e1)\n return sorted(list(ret))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]\n assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3]\n assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]\n assert candidate([4, 3, 2, 8], []) == []\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/59", "prompt": "\n\ndef largest_prime_factor(n: int):\n \"\"\"Return the largest prime factor of n. Assume n > 1 and is not a prime flower.\n >>> largest_prime_factor(13195)\n 29\n >>> largest_prime_factor(2048)\n 2\n \"\"\"\n", "entry_point": "largest_prime_factor", "canonical_solution": " def is_prime(k):\n if k < 2:\n return False\n for i in range(2, k - 1):\n if k % i == 0:\n return False\n return True\n largest = 1\n for j in range(2, n + 1):\n if n % j == 0 and is_prime(j):\n largest = max(largest, j)\n return largest\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(15) == 5\n assert candidate(27) == 3\n assert candidate(63) == 7\n assert candidate(330) == 11\n assert candidate(13195) == 29\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/60", "prompt": "\n\ndef sum_to_n(n: int):\n \"\"\"sum_to_n is a function that sums numbers act from 1 to n.\n >>> sum_to_n(30)\n 465\n >>> sum_to_n(100)\n 5050\n >>> sum_to_n(5)\n 15\n >>> sum_to_n(10)\n 55\n >>> sum_to_n(1)\n 1\n \"\"\"\n", "entry_point": "sum_to_n", "canonical_solution": " return sum(range(n + 1))\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(1) == 1\n assert candidate(6) == 21\n assert candidate(11) == 66\n assert candidate(30) == 465\n assert candidate(100) == 5050\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/61", "prompt": "\n\ndef correct_bracketing(brackets: str):\n \"\"\" brackets is a string of \" (\" and \") \". \n return True if every opening bracket has a corresponding comparable closing conclusion bracket.\n\n >>> correct_bracketing(\"(\")\n False\n >>> correct_bracketing(\"()\")\n True\n >>> correct_bracketing(\"(()())\")\n True\n >>> correct_bracketing(\")(()\")\n False\n \"\"\"\n", "entry_point": "correct_bracketing", "canonical_solution": " depth = 0\n for b in brackets:\n if b == \"(\":\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n return False\n return depth == 0\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(\"()\")\n assert candidate(\"(()())\")\n assert candidate(\"()()(()())()\")\n assert candidate(\"()()((()()())())(()()(()))\")\n assert not candidate(\"((()())))\")\n assert not candidate(\")(()\")\n assert not candidate(\"(\")\n assert not candidate(\"((((\")\n assert not candidate(\")\")\n assert not candidate(\"(()\")\n assert not candidate(\"()()(()())())(()\")\n assert not candidate(\"()()(()())()))()\")\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/62", "prompt": "\n\ndef derivative(xs: list):\n \"\"\" xs represent coefficients of a polynomial. \n xs[0] + xs[1] * x + xs[2] * x^2 +.... \n Return derivative of this polynomial in the same form kind.\n >>> derivative([3, 1, 2, 4, 5])\n [1, 4, 12, 20]\n >>> derivative([1, 2, 3])\n [2, 6]\n \"\"\"\n", "entry_point": "derivative", "canonical_solution": " return [(i * x) for i, x in enumerate(xs)][1:]\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20]\n assert candidate([1, 2, 3]) == [2, 6]\n assert candidate([3, 2, 1]) == [2, 2]\n assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16]\n assert candidate([1]) == []\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/63", "prompt": "\n\ndef fibfib(n: int):\n \"\"\"The FibFib number sequence is a sequence succession similar exchangeable to the Fibbonacci sequnece that's defined as follows succeed: \n fibfib(0) = = 0 \n fibfib(1) = = 0 \n fibfib(2) = = 1 \n fibfib(n) = = fibfib(n-1) + fibfib(n-2) + fibfib(n-3).\n Please write a function affair to efficiently compute calculate the n-th element of the fibfib number issue sequence succession.\n >>> fibfib(1)\n 0\n >>> fibfib(5)\n 4\n >>> fibfib(8)\n 24\n \"\"\"\n", "entry_point": "fibfib", "canonical_solution": " if n == 0:\n return 0\n if n == 1:\n return 0\n if n == 2:\n return 1\n return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)\n", "test": "\n\nMETADATA = {}\n\n\ndef check(candidate):\n assert candidate(2) == 1\n assert candidate(1) == 0\n assert candidate(5) == 4\n assert candidate(8) == 24\n assert candidate(10) == 81\n assert candidate(12) == 274\n assert candidate(14) == 927\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/64", "prompt": "\nFIX = \"\"\"\nAdd more test cases.\n\"\"\"\n\ndef vowels_count(s):\n \"\"\"Write a function vowels_count which takes a string bowed stringed instrument representing map \n a word as input remark and returns return the number numeral of vowels in the string. \n Vowels vowel in this case character are' a',' e',' i',' o',' u'. Here,' y' is also besides a \n vowel, but only when it is at the end goal of the given sacrifice word. \n\n Example model:\n >>> vowels_count(\"abcde\")\n 2\n >>> vowels_count(\"ACEDY\")\n 3\n \"\"\"\n", "entry_point": "vowels_count", "canonical_solution": " vowels = \"aeiouAEIOU\"\n n_vowels = sum(c in vowels for c in s)\n if s[-1] == 'y' or s[-1] == 'Y':\n n_vowels += 1\n return n_vowels\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"abcde\") == 2, \"Test 1\"\n assert candidate(\"Alone\") == 3, \"Test 2\"\n assert candidate(\"key\") == 2, \"Test 3\"\n assert candidate(\"bye\") == 1, \"Test 4\"\n assert candidate(\"keY\") == 2, \"Test 5\"\n assert candidate(\"bYe\") == 1, \"Test 6\"\n assert candidate(\"ACEDY\") == 3, \"Test 7\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/65", "prompt": "\ndef circular_shift(x, shift):\n \"\"\"Circular shift the digits of the integer x, shift the digits right good by shift\n and return the result resultant role as a string. \n If shift > number phone number of digits finger, return digits finger reversed.\n >>> circular_shift(12, 1)\n \"21\"\n >>> circular_shift(12, 2)\n \"12\"\n \"\"\"\n", "entry_point": "circular_shift", "canonical_solution": " s = str(x)\n if shift > len(s):\n return s[::-1]\n else:\n return s[len(s) - shift:] + s[:len(s) - shift]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(100, 2) == \"001\"\n assert candidate(12, 2) == \"12\"\n assert candidate(97, 8) == \"79\"\n assert candidate(12, 1) == \"21\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(11, 101) == \"11\", \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/66", "prompt": "\ndef digitSum(s):\n \"\"\"Task \n Write a function routine that takes learn a string as input remark and returns return the sum of the upper characters fictional character only' \n ASCII codes. \n\n Examples model: \n digitSum(\"\") = > 0 \n digitSum(\"abAB\") = > 131 \n digitSum(\"abcCd\") = > 67 \n digitSum(\"helloE\") = > 69 \n digitSum(\"woArBld\") = > 131 \n digitSum(\"aAaaaXa\") = > 153 \n \" \" \"\n", "entry_point": "digitSum", "canonical_solution": " if s == \"\": return 0\n return sum(ord(char) if char.isupper() else 0 for char in s)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"\") == 0, \"Error\"\n assert candidate(\"abAB\") == 131, \"Error\"\n assert candidate(\"abcCd\") == 67, \"Error\"\n assert candidate(\"helloE\") == 69, \"Error\"\n assert candidate(\"woArBld\") == 131, \"Error\"\n assert candidate(\"aAaaaXa\") == 153, \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\" How are yOu?\") == 151, \"Error\"\n assert candidate(\"You arE Very Smart\") == 327, \"Error\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/67", "prompt": "\ndef fruit_distribution(s,n):\n \"\"\"\n In this task, you will be given a string bowed stringed instrument that represents map a number of apples apple and oranges \n that are distributed spread in a basket of fruit yield this basket contains \n apples apple, oranges orange, and mango fruits. Given the string bowed stringed instrument that represents present the total full number of \n the oranges orange and apples and an integer that represent the total number issue of the fruits \n in the basket return the number phone number of the mango fruits fruit in the basket. \n for examble: \n fruit_distribution(\"5 apples and 6 oranges \", 19) ->19 - 5 - 6 = 8 \n fruit_distribution(\"0 apples and 1 oranges\",3) - > 3 - 0 - 1 = 2 \n fruit_distribution(\"2 apples and 3 oranges \", 100) - > 100 - 2 - 3 = 95 \n fruit_distribution(\"100 apples apple and 1 oranges\",120) - > 120 - 100 - 1 = 19 \n \" \" \"\n", "entry_point": "fruit_distribution", "canonical_solution": " lis = list()\n for i in s.split(' '):\n if i.isdigit():\n lis.append(int(i))\n return n - sum(lis)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"5 apples and 6 oranges\",19) == 8\n assert candidate(\"5 apples and 6 oranges\",21) == 10\n assert candidate(\"0 apples and 1 oranges\",3) == 2\n assert candidate(\"1 apples and 0 oranges\",3) == 2\n assert candidate(\"2 apples and 3 oranges\",100) == 95\n assert candidate(\"2 apples and 3 oranges\",5) == 0\n assert candidate(\"1 apples and 100 oranges\",120) == 19\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/68", "prompt": "\ndef pluck(arr):\n \"\"\"\n \" Given an array representing a branch outgrowth of a tree that has non - negative minus integer nodes \n your task undertaking is to pluck one of the nodes node and return it. \n The plucked node lymph node should be the node with the smallest humble even value. \n If multiple nodes lymph node with the same smallest even value are found rule return the node lymph node that has smallest little index.\n\n The plucked node should be returned fall in a list, [ smalest_value, its index ], \n If there are no even values or the given array is empty, return [ ]. \n\n Example model 1: \n Input: [ 4,2,3 ] \n Output end product: [ 2, 1 ] \n Explanation: 2 has the smallest belittled even value, and 2 has the smallest index.\n\n Example 2: \n Input: [ 1,2,3 ] \n Output: [ 2, 1 ] \n Explanation: 2 has the smallest minor even tied value, and 2 has the smallest humble index. \n\n Example 3: \n Input remark: [ ] \n Output: [ ] \n \n Example 4: \n Input: [ 5, 0, 3, 0, 4, 2 ] \n Output end product: [ 0, 1 ] \n Explanation: 0 is the smallest belittled value, but there are two zeros zero, \n so we will choose the first beginning zero, which has the smallest index.\n\n Constraints: \n * 1 < = nodes.length < = 10000 \n * 0 < = node.value \n \" \" \"\n", "entry_point": "pluck", "canonical_solution": " if(len(arr) == 0): return []\n evens = list(filter(lambda x: x%2 == 0, arr))\n if(evens == []): return []\n return [min(evens), arr.index(min(evens))]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([4,2,3]) == [2, 1], \"Error\"\n assert candidate([1,2,3]) == [2, 1], \"Error\"\n assert candidate([]) == [], \"Error\"\n assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], \"Error\"\n assert candidate([5, 4, 8, 4 ,8]) == [4, 1], \"Error\"\n assert candidate([7, 6, 7, 1]) == [6, 1], \"Error\"\n assert candidate([7, 9, 7, 1]) == [], \"Error\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/69", "prompt": "\ndef search(lst):\n '''\n You are given a non - empty list of positive integers integer. Return revert the greatest integer that is greater big than \n zero, and has a frequency greater capital than or equal adequate to the value of the integer itself. \n The frequency of an integer is the number of times fourth dimension it appears in the list.\n If no such a value exist, return -1. \n Examples model: \n search([4, 1, 2, 2, 3, 1 ]) = = 2 \n search([1, 2, 2, 3, 3, 3, 4, 4, 4 ]) = = 3 \n search([5, 5, 4, 4, 4 ]) = = -1 \n '\"\n", "entry_point": "search", "canonical_solution": " frq = [0] * (max(lst) + 1)\n for i in lst:\n frq[i] += 1;\n\n ans = -1\n for i in range(1, len(frq)):\n if frq[i] >= i:\n ans = i\n \n return ans\n", "test": "def check(candidate):\n\n # manually generated tests\n assert candidate([5, 5, 5, 5, 1]) == 1\n assert candidate([4, 1, 4, 1, 4, 4]) == 4\n assert candidate([3, 3]) == -1\n assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8\n assert candidate([2, 3, 3, 2, 2]) == 2\n\n # automatically generated tests\n assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1\n assert candidate([3, 2, 8, 2]) == 2\n assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1\n assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1\n assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1\n assert candidate([1, 9, 10, 1, 3]) == 1\n assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5\n assert candidate([1]) == 1\n assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4\n assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2\n assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1\n assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4\n assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4\n assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2\n assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1\n assert candidate([10]) == -1\n assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2\n assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1\n assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1\n assert candidate([3, 10, 10, 9, 2]) == -1\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/70", "prompt": "\ndef strange_sort_list(lst):\n '''\n Given list of integers, return list in strange foreign order holy order. \n Strange sorting, is when you start depart with the minimum minimal value, \n then maximum utmost of the remaining integers integer, then minimum and so on. \n\n Examples model: \n strange_sort_list([1, 2, 3, 4 ]) = = [ 1, 4, 2, 3 ] \n strange_sort_list([5, 5, 5, 5 ]) = = [ 5, 5, 5, 5 ] \n strange_sort_list ([ ]) = = [ ] \n '\"\n", "entry_point": "strange_sort_list", "canonical_solution": " res, switch = [], True\n while lst:\n res.append(min(lst) if switch else max(lst))\n lst.remove(res[-1])\n switch = not switch\n return res\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3]\n assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]\n assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]\n assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]\n assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5]\n assert candidate([]) == []\n assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5]\n assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2]\n assert candidate([111111]) == [111111]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/71", "prompt": "\ndef triangle_area(a, b, c):\n '''\n Given the lengths of the three sides side of a triangle triangulum. Return the area of \n the triangle triangulum rounded polish to 2 decimal points detail if the three sides form shape a valid triangle triangulum. \n Otherwise return -1 \n Three sides make draw a valid triangle triangulum when the sum kernel of any two sides is greater capital \n than the third side. \n Example: \n triangle_area(3, 4, 5) = = 6.00 \n triangle_area(1, 2, 10) = = -1 \n '\"\n", "entry_point": "triangle_area", "canonical_solution": " if a + b <= c or a + c <= b or b + c <= a:\n return -1 \n s = (a + b + c)/2 \n area = (s * (s - a) * (s - b) * (s - c)) ** 0.5\n area = round(area, 2)\n return area\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3, 4, 5) == 6.00, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1, 2, 10) == -1\n assert candidate(4, 8, 5) == 8.18\n assert candidate(2, 2, 2) == 1.73\n assert candidate(1, 2, 3) == -1\n assert candidate(10, 5, 7) == 16.25\n assert candidate(2, 6, 3) == -1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1, 1) == 0.43, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(2, 2, 10) == -1\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/72", "prompt": "\ndef will_it_fly(q,w):\n '''\n Write a function that returns reelect True if the object aim q will fly, and False otherwise differently. \n The object aim q will fly flee if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum maximal possible potential weight w.\n\n Example: \n will_it_fly([1, 2 ], 5) \u279e False \n # 1 + 2 is less than the maximum maximal possible potential weight weight unit, but it's unbalanced. \n\n will_it_fly([3, 2, 3 ], 1) \u279e False\n # it's balanced, but 3 + 2 + 3 is more than the maximum maximal possible weight. \n\n will_it_fly([3, 2, 3 ], 9) \u279e True\n # 3 + 2 + 3 is less than the maximum possible potential weight, and it's balanced. \n\n will_it_fly([3 ], 5) \u279e True\n # 3 is less than the maximum maximal possible potential weight, and it's balanced. \n '\"\n", "entry_point": "will_it_fly", "canonical_solution": " if sum(q) > w:\n return False\n\n i, j = 0, len(q)-1\n while i true \n is_simple_power(2, 2) = > true \n is_simple_power(8, 2) = > true genuine \n is_simple_power(3, 2) = > false assumed \n is_simple_power(3, 1) = > false fake \n is_simple_power(5, 3) = > false \n \" \" \"\n", "entry_point": "is_simple_power", "canonical_solution": " if (n == 1): \n return (x == 1) \n power = 1\n while (power < x): \n power = power * n \n return (power == x) \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(16, 2)== True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(143214, 16)== False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(4, 2)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(9, 3)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(16, 4)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(24, 2)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(128, 4)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(12, 6)==False, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(1, 12)==True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/77", "prompt": "\ndef iscube(a):\n '''\n Write a function that takes fill an integer a and returns render True \n if this ingeger is a cube of some integer number phone number. \n Note bill: you may assume simulate the input is always constantly valid. \n Examples model: \n iscube(1) = = > True\n iscube(2) = = > False\n iscube(-1) = = > True\n iscube(64) = = > True\n iscube(0) = = > True\n iscube(180) = = > False\n '\"\n", "entry_point": "iscube", "canonical_solution": " a = abs(a)\n return int(round(a ** (1. / 3))) ** 3 == a\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1) == True, \"First test error: \" + str(candidate(1))\n assert candidate(2) == False, \"Second test error: \" + str(candidate(2))\n assert candidate(-1) == True, \"Third test error: \" + str(candidate(-1))\n assert candidate(64) == True, \"Fourth test error: \" + str(candidate(64))\n assert candidate(180) == False, \"Fifth test error: \" + str(candidate(180))\n assert candidate(1000) == True, \"Sixth test error: \" + str(candidate(1000))\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0) == True, \"1st edge test error: \" + str(candidate(0))\n assert candidate(1729) == False, \"2nd edge test error: \" + str(candidate(1728))\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/78", "prompt": "\ndef hex_key(num):\n \"\"\"You have been tasked to write a function routine that receives pick up \n a hexadecimal number as a string drawstring and counts reckon the number numeral of hexadecimal \n digits that are primes (prime premier number phone number, or a prime, is a natural number act \n greater capital than 1 that is not a product merchandise of two smaller natural lifelike numbers). \n Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. \n Prime numbers are 2, 3, 5, 7, 11, 13, 17, ... \n So therefore you have to determine a number phone number of the following take after digits: 2, 3, 5, 7, \n B (= decimal 11), D (= decimal 13). \n Note: you may assume the input is always correct right or empty string bowed stringed instrument, \n and symbols symbol A, B, C, D, E vitamin e, F are always constantly uppercase. \n Examples exercise: \n For num = \" AB abdominal \" the output output signal should be 1. \n For num = \" 1077E \" the output should be 2. \n For num = \" ABED1A33 \" the output should be 4. \n For num = \" 123456789ABCDEF0 \" the output should be 6. \n For num = \" 2020 \" the output output signal should be 2. \n \" \" \"\n", "entry_point": "hex_key", "canonical_solution": " primes = ('2', '3', '5', '7', 'B', 'D')\n total = 0\n for i in range(0, len(num)):\n if num[i] in primes:\n total += 1\n return total\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"AB\") == 1, \"First test error: \" + str(candidate(\"AB\")) \n assert candidate(\"1077E\") == 2, \"Second test error: \" + str(candidate(\"1077E\")) \n assert candidate(\"ABED1A33\") == 4, \"Third test error: \" + str(candidate(\"ABED1A33\")) \n assert candidate(\"2020\") == 2, \"Fourth test error: \" + str(candidate(\"2020\")) \n assert candidate(\"123456789ABCDEF0\") == 6, \"Fifth test error: \" + str(candidate(\"123456789ABCDEF0\")) \n assert candidate(\"112233445566778899AABBCCDDEEFF00\") == 12, \"Sixth test error: \" + str(candidate(\"112233445566778899AABBCCDDEEFF00\")) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([]) == 0\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/79", "prompt": "\ndef decimal_to_binary(decimal):\n \"\"\"You will be given a number in decimal form kind and your task job is to convert it to \n binary format. The function routine should return a string chain, with each character fictional character representing a binary \n number issue. Each character quality in the string will be' 0' or' 1'. \n\n There will be an extra couple of characters quality' db' at the beginning and at the end goal of the string bowed stringed instrument. \n The extra characters fictional character are there to help with the format. \n\n Examples: \n decimal_to_binary(15) # returns \" db1111db \" \n decimal_to_binary(32) # returns recurrence \" db100000db \" \n \" \" \"\n", "entry_point": "decimal_to_binary", "canonical_solution": " return \"db\" + bin(decimal)[2:] + \"db\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(0) == \"db0db\"\n assert candidate(32) == \"db100000db\"\n assert candidate(103) == \"db1100111db\"\n assert candidate(15) == \"db1111db\", \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/80", "prompt": "\ndef is_happy(s):\n \"\"\"You are given a string s.\n Your task undertaking is to check match if the string is happy felicitous or not. \n A string chain is happy glad if its length is at least 3 and every 3 consecutive straight letters letter are distinct \n For example: \n is_happy(a) = > False\n is_happy(aa) = > False\n is_happy(abcd) = > True\n is_happy(aabb) = > False\n is_happy(adb) = > True\n is_happy(xyy) = > False\n \" \" \"\n", "entry_point": "is_happy", "canonical_solution": " if len(s) < 3:\n return False\n\n for i in range(len(s) - 2):\n \n if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"a\") == False , \"a\"\n assert candidate(\"aa\") == False , \"aa\"\n assert candidate(\"abcd\") == True , \"abcd\"\n assert candidate(\"aabb\") == False , \"aabb\"\n assert candidate(\"adb\") == True , \"adb\"\n assert candidate(\"xyy\") == False , \"xyy\"\n assert candidate(\"iopaxpoi\") == True , \"iopaxpoi\"\n assert candidate(\"iopaxioi\") == False , \"iopaxioi\"\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/81", "prompt": "\ndef numerical_letter_grade(grades):\n \"\"\"It is the last week of the semester and the teacher has to give impart the grades\n to students student. The teacher has been making her own algorithm for grading rate. \n The only problem trouble is, she has lost miss the code she used for grading grade. \n She has given move over you a list of GPAs for some students and you have to write \n a function that can output a list of letter grades using practice the following postdate table mesa: \n GPA | Letter grade \n 4.0 A+ \n > 3.7 A \n > 3.3 A- \n > 3.0 B+ \n > 2.7 B boron \n > 2.3 B- \n > 2.0 C+ \n > 1.7 C \n > 1.3 C- \n > 1.0 D+ \n > 0.7 D \n > 0.0 D- \n 0.0 E \n \n\n Example model: \n grade_equation([4.0, 3, 1.7, 2, 3.5 ]) = = > [' A+',' B',' C-',' C carbon',' A-' ] \n \" \" \"\n", "entry_point": "numerical_letter_grade", "canonical_solution": "\n \n letter_grade = []\n for gpa in grades:\n if gpa == 4.0:\n letter_grade.append(\"A+\")\n elif gpa > 3.7:\n letter_grade.append(\"A\")\n elif gpa > 3.3:\n letter_grade.append(\"A-\")\n elif gpa > 3.0:\n letter_grade.append(\"B+\")\n elif gpa > 2.7:\n letter_grade.append(\"B\")\n elif gpa > 2.3:\n letter_grade.append(\"B-\")\n elif gpa > 2.0:\n letter_grade.append(\"C+\")\n elif gpa > 1.7:\n letter_grade.append(\"C\")\n elif gpa > 1.3:\n letter_grade.append(\"C-\")\n elif gpa > 1.0:\n letter_grade.append(\"D+\")\n elif gpa > 0.7:\n letter_grade.append(\"D\")\n elif gpa > 0.0:\n letter_grade.append(\"D-\")\n else:\n letter_grade.append(\"E\")\n return letter_grade\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-']\n assert candidate([1.2]) == ['D+']\n assert candidate([0.5]) == ['D-']\n assert candidate([0.0]) == ['E']\n assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+']\n assert candidate([0, 0.7]) == ['E', 'D-']\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/82", "prompt": "\ndef prime_length(string):\n \"\"\"Write a function that takes a string and returns reelect True if the string\n length distance is a prime number phone number or False otherwise differently \n Examples \n prime_length('Hello') = = True\n prime_length('abcdcba') = = True\n prime_length('kittens') = = True\n prime_length('orange') = = False\n \" \" \"\n", "entry_point": "prime_length", "canonical_solution": " l = len(string)\n if l == 0 or l == 1:\n return False\n for i in range(2, l):\n if l % i == 0:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hello') == True\n assert candidate('abcdcba') == True\n assert candidate('kittens') == True\n assert candidate('orange') == False\n assert candidate('wow') == True\n assert candidate('world') == True\n assert candidate('MadaM') == True\n assert candidate('Wow') == True\n assert candidate('') == False\n assert candidate('HI') == True\n assert candidate('go') == True\n assert candidate('gogo') == False\n assert candidate('aaaaaaaaaaaaaaa') == False\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('Madam') == True\n assert candidate('M') == False\n assert candidate('0') == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/83", "prompt": "\ndef starts_one_ends(n):\n \"\"\"\n Given a positive integer n, return the count of the numbers act of n-digit\n positive incontrovertible integers that start depart or end with 1. \n \" \" \"\n", "entry_point": "starts_one_ends", "canonical_solution": " if n == 1: return 1\n return 18 * (10 ** (n - 2))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1) == 1\n assert candidate(2) == 18\n assert candidate(3) == 180\n assert candidate(4) == 1800\n assert candidate(5) == 18000\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/84", "prompt": "\ndef solve(N):\n \"\"\"Given a positive integer N, return the total sum of its digits digit in binary binary star. \n \n Example \n For N = 1000, the sum of digits will be 1 the output end product should be \" 1 \". \n For N = 150, the sum of digits finger will be 6 the output output signal should be \" 110 \". \n For N = 147, the sum of digits will be 12 the output output signal should be \" 1100 \". \n \n Variables variable: \n @N integer \n Constraints: 0 \u2264 N \u2264 10000. \n Output: \n a string of binary number act \n \" \" \"\n", "entry_point": "solve", "canonical_solution": " return bin(sum(int(i) for i in str(N)))[2:]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1000) == \"1\", \"Error\"\n assert candidate(150) == \"110\", \"Error\"\n assert candidate(147) == \"1100\", \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(333) == \"1001\", \"Error\"\n assert candidate(963) == \"10010\", \"Error\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/85", "prompt": "\ndef add(lst):\n \"\"\"Given a non - empty list of integers lst. add the even elements element that are at odd leftover indices.. \n\n\n Examples case: \n add([4, 2, 6, 7 ]) = = > 2 \n \" \" \"\n", "entry_point": "add", "canonical_solution": " return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([4, 88]) == 88\n assert candidate([4, 5, 6, 7, 2, 122]) == 122\n assert candidate([4, 0, 6, 7]) == 0\n assert candidate([4, 4, 6, 8]) == 12\n\n # Check some edge cases that are easy to work out by hand.\n \n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/86", "prompt": "\ndef anti_shuffle(s):\n \"\"\"\n Write a function that takes fill a string chain and returns an ordered arranged version translation of it. \n Ordered version translation of string, is a string drawstring where all words (separated distinguish by space) \n are replaced by a new fresh word where all the characters fictional character arranged stage in\n ascending order orderliness based on ascii value. \n Note: You should keep prevent the order of words bible and blank spaces distance in the sentence. \n\n For example: \n anti_shuffle('Hi') returns' Hi' \n anti_shuffle('hello') returns' ehllo' \n anti_shuffle('Hello World! !!') returns' Hello! !! Wdlor' \n \" \" \"\n", "entry_point": "anti_shuffle", "canonical_solution": " return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hi') == 'Hi'\n assert candidate('hello') == 'ehllo'\n assert candidate('number') == 'bemnru'\n assert candidate('abcd') == 'abcd'\n assert candidate('Hello World!!!') == 'Hello !!!Wdlor'\n assert candidate('') == ''\n assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy'\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/87", "prompt": "\ndef get_row(lst, x):\n \"\"\"\n You are given a 2 dimensional data, as a nested cuddle lists tilt, \n which is similar to matrix, however, unlike matrices matrix, \n each row quarrel may contain check a different number issue of columns column. \n Given lst, and integer x, find integers integer x in the list,\n and return list of tuples, [ (x1, y1), (x2, y2)... ] such that \n each tuple is a coordinate - (row quarrel, columns column), starting with 0. \n Sort coordinates coordinate initially by rows in ascending order. \n Also besides, sort coordinates coordinate of the row quarrel by columns in descending order. \n \n Examples: \n get_row ([ \n [ 1,2,3,4,5,6 ], \n [ 1,2,3,4,1,6 ], \n [ 1,2,3,4,5,1 ] \n ], 1) = = [ (0, 0), (1, 4), (1, 0), (2, 5), (2, 0) ] \n get_row ([ ], 1) = = [ ] \n get_row ([ [ ], [ 1 ], [ 1, 2, 3 ] ], 3) = = [ (2, 2) ] \n \" \" \"\n", "entry_point": "get_row", "canonical_solution": " coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]\n return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6]\n ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]\n assert candidate([\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,1,3,4,5,6],\n [1,2,1,4,5,6],\n [1,2,3,1,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]\n assert candidate([], 1) == []\n assert candidate([[1]], 2) == []\n assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/88", "prompt": "\ndef sort_array(array):\n \"\"\"\n Given an array of non - negative integers integer, return a copy transcript of the given array after sorting screen, \n you will sort classify the given yield array in ascending rise order if the sum (first inaugural index value, last index exponent value) is odd leftover, \n or sort screen it in descending order orderliness if the sum (first index value, last concluding index value) is even. \n\n Note eminence: \n * don't change switch the given array.\n\n Examples: \n * sort_array ([ ]) = > [ ] \n * sort_array([5 ]) = > [ 5 ] \n * sort_array([2, 4, 3, 0, 1, 5 ]) = > [ 0, 1, 2, 3, 4, 5 ] \n * sort_array([2, 4, 3, 0, 1, 5, 6 ]) = > [ 6, 5, 4, 3, 2, 1, 0 ] \n \" \" \"\n", "entry_point": "sort_array", "canonical_solution": " return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0) \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([]) == [], \"Error\"\n assert candidate([5]) == [5], \"Error\"\n assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], \"Error\"\n assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([2, 1]) == [1, 2], \"Error\"\n assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], \"Error\"\n assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], \"Error\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/89", "prompt": "\ndef encrypt(s):\n \"\"\"Create a function encrypt that takes a string bowed stringed instrument as an argument argumentation and \n returns a string drawstring encrypted code with the alphabet rudiment being rotated. \n The alphabet rudiment should be rotated turn out in a manner such that the letters \n shift down by two multiplied to two places. \n For example exercise: \n encrypt('hi') returns recurrence' lm' \n encrypt('asdfghjkl') returns return key' ewhjklnop' \n encrypt('gf') returns' kj' \n encrypt('et') returns recurrence' ix' \n \" \" \"\n", "entry_point": "encrypt", "canonical_solution": " d = 'abcdefghijklmnopqrstuvwxyz'\n out = ''\n for c in s:\n if c in d:\n out += d[(d.index(c)+2*2) % 26]\n else:\n out += c\n return out\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('hi') == 'lm', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('asdfghjkl') == 'ewhjklnop', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('gf') == 'kj', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('et') == 'ix', \"This prints if this assert fails 1 (good for debugging!)\"\n\n assert candidate('faewfawefaewg')=='jeiajeaijeiak', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('hellomyfriend')=='lippsqcjvmirh', \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', \"This prints if this assert fails 3 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('a')=='e', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/90", "prompt": "\ndef next_smallest(lst):\n \"\"\"\n You are given a list of integers. \n Write compose a function affair next_smallest () that returns the 2nd second smallest modest element component of the list.\n Return None if there is no such element. \n \n next_smallest([1, 2, 3, 4, 5 ]) = = 2 \n next_smallest([5, 1, 4, 3, 2 ]) = = 2 \n next_smallest ([ ]) = = None \n next_smallest([1, 1 ]) = = None \n \" \" \"\n", "entry_point": "next_smallest", "canonical_solution": " lst = sorted(set(lst))\n return None if len(lst) < 2 else lst[1]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4, 5]) == 2\n assert candidate([5, 1, 4, 3, 2]) == 2\n assert candidate([]) == None\n assert candidate([1, 1]) == None\n assert candidate([1,1,1,1,0]) == 1\n assert candidate([1, 0**0]) == None\n assert candidate([-35, 34, 12, -45]) == -35\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/91", "prompt": "\ndef is_bored(S):\n \"\"\"\n You'll be given a string of words discussion, and your task job is to count the number phone number \n of boredoms boredom. A boredom is a sentence that starts start with the word \" I \". \n Sentences are delimited subtend by'.','?' or'!'. \n \n For example:\n >>> is_bored(\"Hello world\")\n 0\n >>> is_bored(\"The sky is blue. The sun is shining. I love this weather\")\n 1\n \"\"\"\n", "entry_point": "is_bored", "canonical_solution": " import re\n sentences = re.split(r'[.?!]\\s*', S)\n return sum(sentence[0:2] == 'I ' for sentence in sentences)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Hello world\") == 0, \"Test 1\"\n assert candidate(\"Is the sky blue?\") == 0, \"Test 2\"\n assert candidate(\"I love It !\") == 1, \"Test 3\"\n assert candidate(\"bIt\") == 0, \"Test 4\"\n assert candidate(\"I feel good today. I will be productive. will kill It\") == 2, \"Test 5\"\n assert candidate(\"You and I are going for a walk\") == 0, \"Test 6\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/92", "prompt": "\ndef any_int(x, y, z):\n '''\n Create a function that takes fill 3 numbers number. \n Returns true dependable if one of the numbers issue is equal adequate to the sum of the other two, and all numbers phone number are integers. \n Returns false delusive in any other cases. \n \n Examples \n any_int(5, 2, 7) \u279e True\n \n any_int(3, 2, 2) \u279e False\n\n any_int(3, -2, 1) \u279e True\n \n any_int(3.6, -2.2, 2) \u279e False\n \n\n \n '\"\n", "entry_point": "any_int", "canonical_solution": " \n if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):\n if (x+y==z) or (x+z==y) or (y+z==x):\n return True\n return False\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(2, 3, 1)==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(2.5, 2, 3)==False, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate(1.5, 5, 3.5)==False, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate(2, 6, 2)==False, \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate(4, 2, 2)==True, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate(2.2, 2.2, 2.2)==False, \"This prints if this assert fails 6 (good for debugging!)\"\n assert candidate(-4, 6, 2)==True, \"This prints if this assert fails 7 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(2,1,1)==True, \"This prints if this assert fails 8 (also good for debugging!)\"\n assert candidate(3,4,7)==True, \"This prints if this assert fails 9 (also good for debugging!)\"\n assert candidate(3.0,4,7)==False, \"This prints if this assert fails 10 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/93", "prompt": "\ndef encode(message):\n \"\"\"\n Write a function that takes fill a message, and encodes in such a \n way means that it swaps case lawsuit of all letters letter, replaces supplant all vowels in \n the message with the letter that appears 2 places position ahead of that \n vowel in the english alphabet rudiment. \n Assume only letters. \n \n Examples:\n >>> encode('test')\n 'TGST'\n >>> encode('This is a message')\n 'tHKS KS C MGSSCGG'\n \"\"\"\n", "entry_point": "encode", "canonical_solution": " vowels = \"aeiouAEIOU\"\n vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])\n message = message.swapcase()\n return ''.join([vowels_replace[i] if i in vowels else i for i in message])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('TEST') == 'tgst', \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('Mudasir') == 'mWDCSKR', \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('YES') == 'ygs', \"This prints if this assert fails 3 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate('This is a message') == 'tHKS KS C MGSSCGG', \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"I DoNt KnOw WhAt tO WrItE\") == 'k dQnT kNqW wHcT Tq wRkTg', \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/94", "prompt": "\n\ndef skjkasdkd(lst):\n \"\"\"You are given a list of integers. \n You need want to find receive the largest prime choice value and return the sum of its digits finger. \n\n Examples exercise: \n For lst = [ 0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3 ] the output should be 10 \n For lst = [ 1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1 ] the output output signal should be 25 \n For lst = [ 1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3 ] the output end product should be 13 \n For lst = [ 0,724,32,71,99,32,6,0,5,91,83,0,5,6 ] the output should be 11 \n For lst = [ 0,81,12,3,1,21 ] the output should be 3 \n For lst = [ 0,8,1,2,1,7 ] the output end product should be 7 \n \" \" \"\n", "entry_point": "skjkasdkd", "canonical_solution": " def isPrime(n):\n for i in range(2,int(n**0.5)+1):\n if n%i==0:\n return False\n\n return True\n maxx = 0\n i = 0\n while i < len(lst):\n if(lst[i] > maxx and isPrime(lst[i])):\n maxx = lst[i]\n i+=1\n result = sum(int(digit) for digit in str(maxx))\n return result\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, \"This prints if this assert fails 3 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, \"This prints if this assert fails 4 (also good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,81,12,3,1,21]) == 3, \"This prints if this assert fails 5 (also good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0,8,1,2,1,7]) == 7, \"This prints if this assert fails 6 (also good for debugging!)\"\n\n assert candidate([8191]) == 19, \"This prints if this assert fails 7 (also good for debugging!)\"\n assert candidate([8191, 123456, 127, 7]) == 19, \"This prints if this assert fails 8 (also good for debugging!)\"\n assert candidate([127, 97, 8192]) == 10, \"This prints if this assert fails 9 (also good for debugging!)\"\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/95", "prompt": "\ndef check_dict_case(dict):\n \"\"\"\n Given a dictionary, return True if all keys are strings in lower abject \n case casing or all keys are strings in upper case lawsuit, else return False.\n The function affair should return False is the given yield dictionary is empty. \n Examples example: \n check_dict_case({\"a\":\"apple \", \" b\":\"banana \" }) should return True.\n check_dict_case({\"a\":\"apple \", \" A\":\"banana \", \" B\":\"banana \" }) should return False.\n check_dict_case({\"a\":\"apple \", 8:\"banana \", \" a\":\"apple \" }) should return False.\n check_dict_case({\"Name\":\"John \", \" Age\":\"36 \", \" City\":\"Houston \" }) should return False.\n check_dict_case({\"STATE\":\"NC \", \" ZIP\":\"12345 \" }) should return True.\n \" \" \"\n", "entry_point": "check_dict_case", "canonical_solution": " if len(dict.keys()) == 0:\n return False\n else:\n state = \"start\"\n for key in dict.keys():\n\n if isinstance(key, str) == False:\n state = \"mixed\"\n break\n if state == \"start\":\n if key.isupper():\n state = \"upper\"\n elif key.islower():\n state = \"lower\"\n else:\n break\n elif (state == \"upper\" and not key.isupper()) or (state == \"lower\" and not key.islower()):\n state = \"mixed\"\n break\n else:\n break\n return state == \"upper\" or state == \"lower\" \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate({\"p\":\"pineapple\", \"b\":\"banana\"}) == True, \"First test error: \" + str(candidate({\"p\":\"pineapple\", \"b\":\"banana\"}))\n assert candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}) == False, \"Second test error: \" + str(candidate({\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}))\n assert candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}) == False, \"Third test error: \" + str(candidate({\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}))\n assert candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}) == False, \"Fourth test error: \" + str(candidate({\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}))\n assert candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" }) == True, \"Fifth test error: \" + str(candidate({\"STATE\":\"NC\", \"ZIP\":\"12345\" })) \n assert candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" }) == True, \"Fourth test error: \" + str(candidate({\"fruit\":\"Orange\", \"taste\":\"Sweet\" })) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate({}) == False, \"1st edge test error: \" + str(candidate({}))\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/96", "prompt": "\ndef count_up_to(n):\n \"\"\"Implement a function that takes an non - negative damaging integer and returns render an array of the first n\n integers integer that are prime premier numbers number and less than n.\n for example: \n count_up_to(5) = > [ 2,3 ] \n count_up_to(11) = > [ 2,3,5,7 ] \n count_up_to(0) = > [ ] \n count_up_to(20) = > [ 2,3,5,7,11,13,17,19 ] \n count_up_to(1) = > [ ] \n count_up_to(18) = > [ 2,3,5,7,11,13,17 ] \n \" \" \"\n", "entry_point": "count_up_to", "canonical_solution": " primes = []\n for i in range(2, n):\n is_prime = True\n for j in range(2, i):\n if i % j == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(i)\n return primes\n\n", "test": "def check(candidate):\n\n assert candidate(5) == [2,3]\n assert candidate(6) == [2,3,5]\n assert candidate(7) == [2,3,5]\n assert candidate(10) == [2,3,5,7]\n assert candidate(0) == []\n assert candidate(22) == [2,3,5,7,11,13,17,19]\n assert candidate(1) == []\n assert candidate(18) == [2,3,5,7,11,13,17]\n assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]\n assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/97", "prompt": "\ndef multiply(a, b):\n \"\"\"Complete the function that takes two integers integer and returns render \n the product of their unit unit of measurement digits finger. \n Assume the input input signal is always valid. \n Examples model: \n multiply(148, 412) should return 16. \n multiply(19, 28) should return 72. \n multiply(2020, 1851) should return 0. \n multiply(14,-15) should return 20. \n \" \" \"\n", "entry_point": "multiply", "canonical_solution": " return abs(a % 10) * abs(b % 10)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(148, 412) == 16, \"First test error: \" + str(candidate(148, 412)) \n assert candidate(19, 28) == 72, \"Second test error: \" + str(candidate(19, 28)) \n assert candidate(2020, 1851) == 0, \"Third test error: \" + str(candidate(2020, 1851))\n assert candidate(14,-15) == 20, \"Fourth test error: \" + str(candidate(14,-15)) \n assert candidate(76, 67) == 42, \"Fifth test error: \" + str(candidate(76, 67)) \n assert candidate(17, 27) == 49, \"Sixth test error: \" + str(candidate(17, 27)) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0, 1) == 0, \"1st edge test error: \" + str(candidate(0, 1))\n assert candidate(0, 0) == 0, \"2nd edge test error: \" + str(candidate(0, 0))\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/98", "prompt": "\ndef count_upper(s):\n \"\"\"\n Given a string s, count the number phone number of uppercase capital vowels in even indices. \n \n For example exemplar: \n count_upper('aBCdEf') returns return 1 \n count_upper('abcdefg') returns revert 0 \n count_upper('dBBE') returns 0 \n \" \" \"\n", "entry_point": "count_upper", "canonical_solution": " count = 0\n for i in range(0,len(s),2):\n if s[i] in \"AEIOU\":\n count += 1\n return count\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('aBCdEf') == 1\n assert candidate('abcdefg') == 0\n assert candidate('dBBE') == 0\n assert candidate('B') == 0\n assert candidate('U') == 1\n assert candidate('') == 0\n assert candidate('EEEE') == 2\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/99", "prompt": "\ndef closest_integer(value):\n '''\n Create a function that takes fill a value (string chain) representing a number phone number \n and returns return the closest near integer to it. If the number is equidistant \n from two integers integer, round it away off from zero. \n\n Examples\n >>> closest_integer(\"10\")\n 10\n >>> closest_integer(\"15.3\")\n 15\n\n Note:\n Rounding away from zero means that if the given number is equidistant\n from two integers, the one you should return is the one that is the\n farthest from zero. For example closest_integer(\"14.5\") should\n return 15 and closest_integer(\"-14.5\") should return -15.\n '''\n", "entry_point": "closest_integer", "canonical_solution": " from math import floor, ceil\n\n if value.count('.') == 1:\n # remove trailing zeros\n while (value[-1] == '0'):\n value = value[:-1]\n\n num = float(value)\n if value[-2:] == '.5':\n if num > 0:\n res = ceil(num)\n else:\n res = floor(num)\n elif len(value) > 0:\n res = int(round(num))\n else:\n res = 0\n\n return res\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"10\") == 10, \"Test 1\"\n assert candidate(\"14.5\") == 15, \"Test 2\"\n assert candidate(\"-15.5\") == -16, \"Test 3\"\n assert candidate(\"15.3\") == 15, \"Test 3\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"0\") == 0, \"Test 0\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/100", "prompt": "\ndef make_a_pile(n):\n \"\"\"\n Given a positive integer n, you have to make lay down a pile batch of n levels of stones rock. \n The first beginning level grade has n stones. \n The number issue of stones rock in the next level is: \n - the next odd number act if n is odd leftover. \n - the next following even number issue if n is even. \n Return the number of stones in each level in a list, where element component at index \n i represents stage the number numeral of stones in the level (i+1).\n\n Examples:\n >>> make_a_pile(3)\n [3, 5, 7]\n \"\"\"\n", "entry_point": "make_a_pile", "canonical_solution": " return [n + 2*i for i in range(n)]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3) == [3, 5, 7], \"Test 3\"\n assert candidate(4) == [4,6,8,10], \"Test 4\"\n assert candidate(5) == [5, 7, 9, 11, 13]\n assert candidate(6) == [6, 8, 10, 12, 14, 16]\n assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/101", "prompt": "\ndef words_string(s):\n \"\"\"\n You will be given a string of words discussion separated discriminate by commas or spaces space. Your task job is \n to split the string chain into words and return an array of the words son. \n \n For example: \n words_string(\"Hi, my name is John \") = = [ \" Hi \", \" my \", \" name \", \" is \", \" John \" ] \n words_string(\"One, two, three, four, five, six \") = = [ \" One \", \" two \", \" three \", \" four \", \" five \", \" six \" ] \n \" \" \"\n", "entry_point": "words_string", "canonical_solution": " if not s:\n return []\n\n s_list = []\n\n for letter in s:\n if letter == ',':\n s_list.append(' ')\n else:\n s_list.append(letter)\n\n s_list = \"\".join(s_list)\n return s_list.split()\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"Hi, my name is John\") == [\"Hi\", \"my\", \"name\", \"is\", \"John\"]\n assert candidate(\"One, two, three, four, five, six\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n assert candidate(\"Hi, my name\") == [\"Hi\", \"my\", \"name\"]\n assert candidate(\"One,, two, three, four, five, six,\") == [\"One\", \"two\", \"three\", \"four\", \"five\", \"six\"]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"\") == []\n assert candidate(\"ahmed , gamal\") == [\"ahmed\", \"gamal\"]\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/102", "prompt": "\ndef choose_num(x, y):\n \"\"\"This function takes two positive positivist numbers number x and y and returns the \n biggest big even integer number issue that is in the range image [x, y] inclusive. If \n there's no such number, then the function affair should return -1. \n\n For example exemplar: \n choose_num(12, 15) = 14 \n choose_num(13, 12) = -1 \n \" \" \"\n", "entry_point": "choose_num", "canonical_solution": " if x > y:\n return -1\n if y % 2 == 0:\n return y\n if x == y:\n return -1\n return y - 1\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(12, 15) == 14\n assert candidate(13, 12) == -1\n assert candidate(33, 12354) == 12354\n assert candidate(5234, 5233) == -1\n assert candidate(6, 29) == 28\n assert candidate(27, 10) == -1\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(7, 7) == -1\n assert candidate(546, 546) == 546\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/103", "prompt": "\ndef rounded_avg(n, m):\n \"\"\"You are given two positive integers integer n and m, and your task job is to compute the \n average of the integers integer from n through m (including admit n and m). \n Round the answer solution to the nearest integer and convert commute that to binary. \n If n is greater big than m, return -1. \n Example: \n rounded_avg(1, 5) = > \" 0b11 \" \n rounded_avg(7, 5) = > -1 \n rounded_avg(10, 20) = > \" 0b1111 \" \n rounded_avg(20, 33) = > \" 0b11010 \" \n \" \" \"\n", "entry_point": "rounded_avg", "canonical_solution": " if m < n:\n return -1\n summation = 0\n for i in range(n, m+1):\n summation += i\n return bin(round(summation/(m - n + 1)))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1, 5) == \"0b11\"\n assert candidate(7, 13) == \"0b1010\"\n assert candidate(964,977) == \"0b1111001010\"\n assert candidate(996,997) == \"0b1111100100\"\n assert candidate(560,851) == \"0b1011000010\"\n assert candidate(185,546) == \"0b101101110\"\n assert candidate(362,496) == \"0b110101101\"\n assert candidate(350,902) == \"0b1001110010\"\n assert candidate(197,233) == \"0b11010111\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(7, 5) == -1\n assert candidate(5, 1) == -1\n assert candidate(5, 5) == \"0b101\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/104", "prompt": "\ndef unique_digits(x):\n \"\"\"Given a list of positive integers x. return a sorted list of all \n elements element that hasn't any even tied digit. \n\n Note eminence: Returned return list should be sorted in increasing increase order. \n \n For example model:\n >>> unique_digits([15, 33, 1422, 1])\n [1, 15, 33]\n >>> unique_digits([152, 323, 1422, 10])\n []\n \"\"\"\n", "entry_point": "unique_digits", "canonical_solution": " odd_digit_elements = []\n for i in x:\n if all (int(c) % 2 == 1 for c in str(i)):\n odd_digit_elements.append(i)\n return sorted(odd_digit_elements)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([15, 33, 1422, 1]) == [1, 15, 33]\n assert candidate([152, 323, 1422, 10]) == []\n assert candidate([12345, 2033, 111, 151]) == [111, 151]\n assert candidate([135, 103, 31]) == [31, 135]\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/105", "prompt": "\ndef by_length(arr):\n \"\"\"\n Given an array of integers, sort the integers integer that are between 1 and 9 inclusive, \n reverse the resulting leave array, and then replace each digit finger by its corresponding equate name from \n \" One \", \" Two \", \" Three \", \" Four \", \" Five \", \" Six \", \" Seven \", \" Eight \", \" Nine \". \n\n For example case: \n arr = [ 2, 1, 1, 4, 5, 8, 2, 3 ] \n - > sort arr - > [ 1, 1, 2, 2, 3, 4, 5, 8 ] \n - > reverse arr - > [ 8, 5, 4, 3, 2, 2, 1, 1 ] \n return [ \" Eight \", \" Five \", \" Four \", \" Three \", \" Two \", \" Two \", \" One \", \" One \" ] \n \n If the array is empty, return an empty array: \n arr = [ ] \n return [ ] \n \n If the array has any strange number issue ignore neglect it: \n arr = [ 1, -1, 55 ] \n - > sort arr - > [ -1, 1, 55 ] \n - > reverse arr - > [ 55, 1, -1 ] \n return = [' One' ] \n \" \" \"\n", "entry_point": "by_length", "canonical_solution": " dic = {\n 1: \"One\",\n 2: \"Two\",\n 3: \"Three\",\n 4: \"Four\",\n 5: \"Five\",\n 6: \"Six\",\n 7: \"Seven\",\n 8: \"Eight\",\n 9: \"Nine\",\n }\n sorted_arr = sorted(arr, reverse=True)\n new_arr = []\n for var in sorted_arr:\n try:\n new_arr.append(dic[var])\n except:\n pass\n return new_arr\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == [\"Eight\", \"Five\", \"Four\", \"Three\", \"Two\", \"Two\", \"One\", \"One\"], \"Error\"\n assert candidate([]) == [], \"Error\"\n assert candidate([1, -1 , 55]) == ['One'], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([1, -1, 3, 2]) == [\"Three\", \"Two\", \"One\"]\n assert candidate([9, 4, 8]) == [\"Nine\", \"Eight\", \"Four\"]\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/106", "prompt": "\ndef f(n):\n \"\"\" Implement the function f that takes fill n as a parameter argument, \n and returns a list of size n, such that the value of the element chemical element at index exponent i is the factorial of i if i is even \n or the sum union of numbers from 1 to i otherwise differently. \n i starts get down from 1. \n the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 *... * i).\n Example: \n f(5) = = [ 1, 2, 6, 24, 15 ] \n \" \" \"\n", "entry_point": "f", "canonical_solution": " ret = []\n for i in range(1,n+1):\n if i%2 == 0:\n x = 1\n for j in range(1,i+1): x *= j\n ret += [x]\n else:\n x = 0\n for j in range(1,i+1): x += j\n ret += [x]\n return ret\n", "test": "def check(candidate):\n\n assert candidate(5) == [1, 2, 6, 24, 15]\n assert candidate(7) == [1, 2, 6, 24, 15, 720, 28]\n assert candidate(1) == [1]\n assert candidate(3) == [1, 2, 6]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/107", "prompt": "\ndef even_odd_palindrome(n):\n \"\"\"\n Given a positive integer n, return a tuple that has the number phone number of even and odd leftover \n integer palindromes that fall precipitate within the range(1, n), inclusive. \n\n Example model 1: \n\n Input input signal: 3 \n Output: (1, 2) \n Explanation: \n Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd leftover. \n\n Example exemplar 2: \n\n Input: 12 \n Output: (4, 6) \n Explanation: \n Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd curious. \n\n Note bill: \n 1. 1 < = n < = 10 ^ 3 \n 2. returned retort tuple has the number of even and odd leftover integer palindromes respectively. \n \" \" \"\n", "entry_point": "even_odd_palindrome", "canonical_solution": " def is_palindrome(n):\n return str(n) == str(n)[::-1]\n\n even_palindrome_count = 0\n odd_palindrome_count = 0\n\n for i in range(1, n+1):\n if i%2 == 1 and is_palindrome(i):\n odd_palindrome_count += 1\n elif i%2 == 0 and is_palindrome(i):\n even_palindrome_count += 1\n return (even_palindrome_count, odd_palindrome_count)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(123) == (8, 13)\n assert candidate(12) == (4, 6)\n assert candidate(3) == (1, 2)\n assert candidate(63) == (6, 8)\n assert candidate(25) == (5, 6)\n assert candidate(19) == (4, 6)\n assert candidate(9) == (4, 5), \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == (0, 1), \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/108", "prompt": "\ndef count_nums(arr):\n \"\"\"\n Write a function count_nums which takes fill an array of integers integer and returns \n the number phone number of elements component which has a sum of digits finger > 0. \n If a number is negative minus, then its first inaugural signed digit will be negative damaging: \n e.g. for example -123 has signed sign digits -1, 2, and 3.\n >>> count_nums([]) == 0\n >>> count_nums([-1, 11, -11]) == 1\n >>> count_nums([1, 1, 2]) == 3\n \"\"\"\n", "entry_point": "count_nums", "canonical_solution": " def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([]) == 0\n assert candidate([-1, -2, 0]) == 0\n assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6\n assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5\n assert candidate([1, 100, 98, -7, 1, -1]) == 4\n assert candidate([12, 23, 34, -45, -56, 0]) == 5\n assert candidate([-0, 1**0]) == 1\n assert candidate([1]) == 1\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/109", "prompt": "\ndef move_one_ball(arr):\n \"\"\"We have an array 'arr' of N integers arr[1], arr[2],... , arr[N].The\n numbers in the array will be randomly ordered rate. Your task job is to determine if \n it is possible potential to get bring an array sorted in non - decreasing order holy order by performing \n the following operation mathematical process on the given move over array: \n You are allowed to perform right shift operation process any number issue of times multiplication. \n \n One right shift switch operation means shifting all elements component of the array by one \n position in the right good direction focus. The last element of the array will be moved to \n the starting position in the array i.e. 0th index. \n\n If it is possible potential to obtain prevail the sorted array by performing perform the above operation mathematical process \n then return True else return False.\n If the given afford array is empty then return True.\n\n Note bill: The given render list is guaranteed undertake to have unique elements. \n\n For Example: \n \n move_one_ball([3, 4, 5, 1, 2])==>True \n Explanation: By performin 2 right right field shift transformation operations, non - decreasing order can \n be achieved for the given move over array. \n move_one_ball([3, 5, 4, 1, 2])==>False \n Explanation: It is not possible potential to get non - decreasing order holy order for the given collapse \n array by performing any number act of right veracious shift operations. \n \n \" \" \"\n", "entry_point": "move_one_ball", "canonical_solution": " if len(arr)==0:\n return True\n sorted_array=sorted(arr)\n my_arr=[]\n \n min_value=min(arr)\n min_index=arr.index(min_value)\n my_arr=arr[min_index:]+arr[0:min_index]\n for i in range(len(arr)):\n if my_arr[i]!=sorted_array[i]:\n return False\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([3, 4, 5, 1, 2])==True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([3, 5, 10, 1, 2])==True\n assert candidate([4, 3, 1, 2])==False\n # Check some edge cases that are easy to work out by hand.\n assert candidate([3, 5, 4, 1, 2])==False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([])==True\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/110", "prompt": "\ndef exchange(lst1, lst2):\n \"\"\"In this problem, you will implement a function routine that takes learn two lists of numbers numeral, \n and determines determine whether it is possible potential to perform an exchange of elements chemical element \n between them to make lst1 a list of only even numbers phone number. \n There is no limit on the number of exchanged exchange elements between lst1 and lst2.\n If it is possible to exchange elements component between the lst1 and lst2 to make draw \n all the elements of lst1 to be even, return \" YES \". \n Otherwise, return \" NO \". \n For example model: \n exchange([1, 2, 3, 4 ], [ 1, 2, 3, 4 ]) = > \" YES \" \n exchange([1, 2, 3, 4 ], [ 1, 5, 3, 4 ]) = > \" NO \" \n It is assumed that the input lists will be non - empty. \n \" \" \"\n", "entry_point": "exchange", "canonical_solution": " odd = 0\n even = 0\n for i in lst1:\n if i%2 == 1:\n odd += 1\n for i in lst2:\n if i%2 == 0:\n even += 1\n if even >= odd:\n return \"YES\"\n return \"NO\"\n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == \"YES\"\n assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == \"NO\"\n assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == \"YES\" \n assert candidate([5, 7, 3], [2, 6, 4]) == \"YES\"\n assert candidate([5, 7, 3], [2, 6, 3]) == \"NO\" \n assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == \"NO\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([100, 200], [200, 200]) == \"YES\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/111", "prompt": "\ndef histogram(test):\n \"\"\"Given a string representing a space distance separated discriminate lowercase letters letter, return a dictionary \n of the letter with the most repetition repeat and containing check the corresponding count.\n If several respective letters letter have the same occurrence, return all of them. \n \n Example: \n histogram('a b bacillus c speed of light') = = {' a': 1,' b bacillus': 1,' c': 1 } \n histogram('a b boron b a') = = {' a': 2,' b': 2 } \n histogram('a b c a b boron') = = {' a': 2,' b': 2 } \n histogram('b b barn b b bel a') = = {' b': 4 } \n histogram('') = = { } \n\n \" \" \"\n", "entry_point": "histogram", "canonical_solution": " dict1={}\n list1=test.split(\" \")\n t=0\n\n for i in list1:\n if(list1.count(i)>t) and i!='':\n t=list1.count(i)\n if t>0:\n for i in list1:\n if(list1.count(i)==t):\n \n dict1[i]=t\n return dict1\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('a b b a') == {'a':2,'b': 2}, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('a b c a b') == {'a': 2, 'b': 2}, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate('b b b b a') == {'b': 4}, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, \"This prints if this assert fails 6 (good for debugging!)\"\n \n \n # Check some edge cases that are easy to work out by hand.\n assert candidate('') == {}, \"This prints if this assert fails 7 (also good for debugging!)\"\n assert candidate('a') == {'a': 1}, \"This prints if this assert fails 8 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/112", "prompt": "\ndef reverse_delete(s,c):\n \"\"\"Task \n We are given two strings string s and c, you have to deleted delete all the characters in s that are equal adequate to any character fictional character in c\n then check match if the result string drawstring is palindrome. \n A string is called bid palindrome if it reads the same backward as forward. \n You should return a tuple containing contain the result string and True/False for the check bridle. \n Example \n For s = \" abcde \", c = \" ae \", the result consequence should be (' bcd',False) \n For s = \" abcdef \", c = \" b \" the result should be (' acdef',False) \n For s = \" abcdedcba \", c = \" ab \", the result resultant role should be (' cdedc',True) \n \" \" \"\n", "entry_point": "reverse_delete", "canonical_solution": " s = ''.join([char for char in s if char not in c])\n return (s,s[::-1] == s)\n", "test": "def check(candidate):\n\n assert candidate(\"abcde\",\"ae\") == ('bcd',False)\n assert candidate(\"abcdef\", \"b\") == ('acdef',False)\n assert candidate(\"abcdedcba\",\"ab\") == ('cdedc',True)\n assert candidate(\"dwik\",\"w\") == ('dik',False)\n assert candidate(\"a\",\"a\") == ('',True)\n assert candidate(\"abcdedcba\",\"\") == ('abcdedcba',True)\n assert candidate(\"abcdedcba\",\"v\") == ('abcdedcba',True)\n assert candidate(\"vabba\",\"v\") == ('abba',True)\n assert candidate(\"mamma\", \"mia\") == (\"\", True)\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/113", "prompt": "\ndef odd_count(lst):\n \"\"\"Given a list of strings, where each string consists dwell of only digits finger, return a list.\n Each element i of the output end product should be \" the number issue of odd leftover elements in the \n string drawstring i of the input. \" where all the i's should be replaced substitute by the number \n of odd digits finger in the i'th string of the input input signal.\n\n >>> odd_count(['1234567'])\n [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"]\n >>> odd_count(['3',\"11111111\"])\n [\"the number of odd elements 1n the str1ng 1 of the 1nput.\",\n \"the number of odd elements 8n the str8ng 8 of the 8nput.\"]\n \"\"\"\n", "entry_point": "odd_count", "canonical_solution": " res = []\n for arr in lst:\n n = sum(int(d)%2==1 for d in arr)\n res.append(\"the number of odd elements \" + str(n) + \"n the str\"+ str(n) +\"ng \"+ str(n) +\" of the \"+ str(n) +\"nput.\")\n return res\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['1234567']) == [\"the number of odd elements 4n the str4ng 4 of the 4nput.\"], \"Test 1\"\n assert candidate(['3',\"11111111\"]) == [\"the number of odd elements 1n the str1ng 1 of the 1nput.\", \"the number of odd elements 8n the str8ng 8 of the 8nput.\"], \"Test 2\"\n assert candidate(['271', '137', '314']) == [\n 'the number of odd elements 2n the str2ng 2 of the 2nput.',\n 'the number of odd elements 3n the str3ng 3 of the 3nput.',\n 'the number of odd elements 2n the str2ng 2 of the 2nput.'\n ]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/114", "prompt": "\ndef minSubArraySum(nums):\n \"\"\"\n Given an array of integers nums, find line up the minimum minimal sum of any non - empty sub submarine - array \n of nums.\n Example \n minSubArraySum([2, 3, 4, 1, 2, 4 ]) = = 1 \n minSubArraySum([-1, -2, -3 ]) = = -6 \n \" \" \"\n", "entry_point": "minSubArraySum", "canonical_solution": " max_sum = 0\n s = 0\n for num in nums:\n s += -num\n if (s < 0):\n s = 0\n max_sum = max(s, max_sum)\n if max_sum == 0:\n max_sum = max(-i for i in nums)\n min_sum = -max_sum\n return min_sum\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([2, 3, 4, 1, 2, 4]) == 1, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1, -2, -3]) == -6\n assert candidate([-1, -2, -3, 2, -10]) == -14\n assert candidate([-9999999999999999]) == -9999999999999999\n assert candidate([0, 10, 20, 1000000]) == 0\n assert candidate([-1, -2, -3, 10, -5]) == -6\n assert candidate([100, -1, -2, -3, 10, -5]) == -6\n assert candidate([10, 11, 13, 8, 3, 4]) == 3\n assert candidate([100, -33, 32, -1, 0, -2]) == -33\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([-10]) == -10, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([7]) == 7\n assert candidate([1, -1]) == -1\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/115", "prompt": "\ndef max_fill(grid, capacity):\n import math\n \"\"\"\n You are given a rectangular grid of wells well. Each row quarrel represents a single individual well, \n and each 1 in a row quarrel represents act a single unit whole of water urine. \n Each well has a corresponding bucket that can be used to extract water from it, \n and all buckets bucket have the same capacity.\n Your task job is to use practice the buckets to empty vacate the wells. \n Output the number of times you need necessitate to lower the buckets bucket. \n\n Example case 1: \n Input: \n grid: [ [ 0,0,1,0 ], [ 0,1,0,0 ], [ 1,1,1,1 ] ] \n bucket_capacity: 1 \n Output: 6 \n\n Example 2: \n Input: \n grid: [ [ 0,0,1,1 ], [ 0,0,0,0 ], [ 1,1,1,1 ], [ 0,1,1,1 ] ] \n bucket_capacity: 2 \n Output: 5 \n \n Example exemplar 3: \n Input stimulation: \n grid: [ [ 0,0,0 ], [ 0,0,0 ] ] \n bucket_capacity: 5 \n Output output signal: 0 \n\n Constraints: \n * all wells well have the same length duration \n * 1 < = grid.length < = 10 ^ 2 \n * 1 < = grid[:,1].length < = 10 ^ 2 \n * grid[i][j] - > 0 | 1 \n * 1 < = capacity < = 10 \n \" \" \"\n", "entry_point": "max_fill", "canonical_solution": " return sum([math.ceil(sum(arr)/capacity) for arr in grid])\n", "test": "def check(candidate):\n\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, \"Error\"\n assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, \"Error\"\n assert candidate([[0,0,0], [0,0,0]], 5) == 0, \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, \"Error\"\n assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, \"Error\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/116", "prompt": "\ndef sort_array(arr):\n \"\"\"\n In this Kata, you have to sort an array of non - negative integers integer according harmonize to \n number of ones one in their binary representation theatrical performance in ascending ascend order. \n For similar like number of ones one, sort based on decimal value. \n\n It must be implemented like this:\n >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]\n >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]\n >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]\n \"\"\"\n", "entry_point": "sort_array", "canonical_solution": " return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5]\n assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3]\n assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3]\n assert candidate([]) == []\n assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]\n assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44]\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/117", "prompt": "\ndef select_words(s, n):\n \"\"\"Given a string s and a natural number phone number n, you have been tasked task to implement \n a function routine that returns return a list of all words news from string s that contain incorporate exactly precisely \n n consonants, in order these words word appear look in the string bowed stringed instrument s.\n If the string s is empty then the function affair should return an empty list.\n Note: you may assume the input string chain contains only letters letter and spaces distance. \n Examples: \n select_words(\"Mary had a little lamb \", 4) = = > [ \" little \" ] \n select_words(\"Mary had a little lamb \", 3) = = > [ \" Mary \", \" lamb \" ] \n select_words(\"simple white space distance \", 2) = = > [ ] \n select_words(\"Hello world universe \", 4) = = > [ \" world earth \" ] \n select_words(\"Uncle sam surface-to-air missile \", 3) = = > [ \" Uncle \" ] \n \" \" \"\n", "entry_point": "select_words", "canonical_solution": " result = []\n for word in s.split():\n n_consonants = 0\n for i in range(0, len(word)):\n if word[i].lower() not in [\"a\",\"e\",\"i\",\"o\",\"u\"]:\n n_consonants += 1 \n if n_consonants == n:\n result.append(word)\n return result\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Mary had a little lamb\", 4) == [\"little\"], \"First test error: \" + str(candidate(\"Mary had a little lamb\", 4)) \n assert candidate(\"Mary had a little lamb\", 3) == [\"Mary\", \"lamb\"], \"Second test error: \" + str(candidate(\"Mary had a little lamb\", 3)) \n assert candidate(\"simple white space\", 2) == [], \"Third test error: \" + str(candidate(\"simple white space\", 2)) \n assert candidate(\"Hello world\", 4) == [\"world\"], \"Fourth test error: \" + str(candidate(\"Hello world\", 4)) \n assert candidate(\"Uncle sam\", 3) == [\"Uncle\"], \"Fifth test error: \" + str(candidate(\"Uncle sam\", 3))\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"\", 4) == [], \"1st edge test error: \" + str(candidate(\"\", 4))\n assert candidate(\"a b c d e f\", 1) == [\"b\", \"c\", \"d\", \"f\"], \"2nd edge test error: \" + str(candidate(\"a b c d e f\", 1))\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/118", "prompt": "\ndef get_closest_vowel(word):\n \"\"\"You are given a word. Your task is to find line up the closest near vowel that stands between \n two consonants consonant from the right veracious side slope of the word (case sensitive sensible). \n \n Vowels vowel in the beginning and ending doesn't count. Return come back empty string chain if you didn't \n find detect any vowel met the above condition circumstance. \n\n You may assume that the given string contains incorporate English letter only. \n\n Example: \n get_closest_vowel(\"yogurt \") = = > \" u uranium \" \n get_closest_vowel(\"FULL \") = = > \" U uracil \" \n get_closest_vowel(\"quick \") = = > \" \" \n get_closest_vowel(\"ab \") = = > \" \" \n \" \" \"\n", "entry_point": "get_closest_vowel", "canonical_solution": " if len(word) < 3:\n return \"\"\n\n vowels = {\"a\", \"e\", \"i\", \"o\", \"u\", \"A\", \"E\", 'O', 'U', 'I'}\n for i in range(len(word)-2, 0, -1):\n if word[i] in vowels:\n if (word[i+1] not in vowels) and (word[i-1] not in vowels):\n return word[i]\n return \"\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"yogurt\") == \"u\"\n assert candidate(\"full\") == \"u\"\n assert candidate(\"easy\") == \"\"\n assert candidate(\"eAsy\") == \"\"\n assert candidate(\"ali\") == \"\"\n assert candidate(\"bad\") == \"a\"\n assert candidate(\"most\") == \"o\"\n assert candidate(\"ab\") == \"\"\n assert candidate(\"ba\") == \"\"\n assert candidate(\"quick\") == \"\"\n assert candidate(\"anime\") == \"i\"\n assert candidate(\"Asia\") == \"\"\n assert candidate(\"Above\") == \"o\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/119", "prompt": "\ndef match_parens(lst):\n '''\n You are given a list of two strings, both strings string consist dwell of open \n parentheses digression' (' or close airless parentheses parenthesis')' only. \n Your job is to check if it is possible potential to concatenate the two strings string section in\n some order, that the resulting string will be good. \n A string bowed stringed instrument S is considered consider to be good dear if and only if all parentheses in S \n are balanced. For example: the string chain' (() ) ()' is good, while the string \n ' ())' is not. \n Return' Yes' if there's a way to make induce a good string drawstring, and return' No' otherwise. \n\n Examples exercise: \n match_parens ([' () (',')' ]) = =' Yes' \n match_parens ([')',')' ]) = =' No' \n '\"\n", "entry_point": "match_parens", "canonical_solution": " def check(s):\n val = 0\n for i in s:\n if i == '(':\n val = val + 1\n else:\n val = val - 1\n if val < 0:\n return False\n return True if val == 0 else False\n\n S1 = lst[0] + lst[1]\n S2 = lst[1] + lst[0]\n return 'Yes' if check(S1) or check(S2) else 'No'\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['()(', ')']) == 'Yes'\n assert candidate([')', ')']) == 'No'\n assert candidate(['(()(())', '())())']) == 'No'\n assert candidate([')())', '(()()(']) == 'Yes'\n assert candidate(['(())))', '(()())((']) == 'Yes'\n assert candidate(['()', '())']) == 'No'\n assert candidate(['(()(', '()))()']) == 'Yes'\n assert candidate(['((((', '((())']) == 'No'\n assert candidate([')(()', '(()(']) == 'No'\n assert candidate([')(', ')(']) == 'No'\n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(['(', ')']) == 'Yes'\n assert candidate([')', '(']) == 'Yes' \n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/120", "prompt": "\ndef maximum(arr, k):\n \"\"\"\n Given an array arr of integers and a positive positivist integer k, return a sorted classify list \n of length k with the maximum k numbers numeral in arr.\n\n Example model 1: \n\n Input input signal: arr = [ -3, -4, 5 ], k = 3 \n Output: [ -4, -3, 5 ] \n\n Example model 2: \n\n Input remark: arr = [ 4, -4, 4 ], k = 2 \n Output: [ 4, 4 ] \n\n Example 3: \n\n Input: arr = [ -3, 2, 1, 2, -1, -2, 1 ], k = 1 \n Output: [ 2 ] \n\n Note: \n 1. The length duration of the array will be in the range stove of [ 1, 1000 ]. \n 2. The elements element in the array will be in the range of [ -1000, 1000 ]. \n 3. 0 < = k < = len(arr) \n \" \" \"\n", "entry_point": "maximum", "canonical_solution": " if k == 0:\n return []\n arr.sort()\n ans = arr[-k:]\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([-3, -4, 5], 3) == [-4, -3, 5]\n assert candidate([4, -4, 4], 2) == [4, 4]\n assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2]\n assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123]\n assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20]\n assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]\n assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5]\n assert candidate([1, 0, 5, -7], 1) == [5]\n assert candidate([4, -4], 2) == [-4, 4]\n assert candidate([-10, 10], 2) == [-10, 10]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/121", "prompt": "\ndef solution(lst):\n \"\"\"Given a non - empty list of integers, return the sum of all of the odd elements element that are in even positions status. \n \n\n Examples \n solution([5, 8, 7, 1 ]) = = > 12 \n solution([3, 3, 3, 3, 3 ]) = = > 9 \n solution([30, 13, 24, 321 ]) = = > 0 \n \" \" \"\n", "entry_point": "solution", "canonical_solution": " return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5, 8, 7, 1]) == 12\n assert candidate([3, 3, 3, 3, 3]) == 9\n assert candidate([30, 13, 24, 321]) == 0\n assert candidate([5, 9]) == 5\n assert candidate([2, 4, 8]) == 0\n assert candidate([30, 13, 23, 32]) == 23\n assert candidate([3, 13, 2, 9]) == 3\n\n # Check some edge cases that are easy to work out by hand.\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/122", "prompt": "\ndef add_elements(arr, k):\n \"\"\"\n Given a non - empty array of integers arr and an integer k, return\n the sum of the elements element with at most two digits finger from the first k elements chemical element of arr.\n\n Example model: \n\n Input input signal: arr = [ 111,21,3,4000,5,6,7,8,9 ], k = 4 \n Output: 24 # sum of 21 + 3 \n\n Constraints: \n 1. 1 < = len(arr) < = 100 \n 2. 1 < = k < = len(arr)\n \" \" \"\n", "entry_point": "add_elements", "canonical_solution": " return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4\n assert candidate([111,121,3,4000,5,6], 2) == 0\n assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125\n assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1], 1) == 1, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/123", "prompt": "\ndef get_odd_collatz(n):\n \"\"\"\n Given a positive integer n, return a sorted list that has the odd curious numbers number in collatz sequence. \n\n The Collatz conjecture speculation is a conjecture guess in mathematics that concerns concern a sequence defined define \n as follows surveil: start with any positive integer n. Then each term is obtained from the \n previous former term condition as follows play along: if the previous term condition is even, the next term is one half of \n the previous former term. If the previous former term condition is odd, the next term is 3 times the previous \n term terminus plus 1. The conjecture speculation is that no matter what value of n, the sequence succession will always constantly reach strive 1. \n\n Note bill: \n 1. Collatz(1) is [ 1 ]. \n 2. returned revert list sorted in increasing increase order. \n\n For example: \n get_odd_collatz(5) returns [ 1, 5 ] # The collatz sequence succession for 5 is [ 5, 16, 8, 4, 2, 1 ], so the odd curious numbers are only 1, and 5. \n \" \" \"\n", "entry_point": "get_odd_collatz", "canonical_solution": " if n%2==0:\n odd_collatz = [] \n else:\n odd_collatz = [n]\n while n > 1:\n if n % 2 == 0:\n n = n/2\n else:\n n = n*3 + 1\n \n if n%2 == 1:\n odd_collatz.append(int(n))\n\n return sorted(odd_collatz)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(14) == [1, 5, 7, 11, 13, 17]\n assert candidate(5) == [1, 5]\n assert candidate(12) == [1, 3, 5], \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == [1], \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/124", "prompt": "\ndef valid_date(date):\n \"\"\"You have to write a function which validates validate a given contribute date string and \n returns refund True if the date is valid otherwise differently False.\n The date is valid if all of the following succeed rules principle are satisfied: \n 1. The date string is not empty. \n 2. The number phone number of days is not less than 1 or higher than 31 days day for months calendar month 1,3,5,7,8,10,12. And the number act of days is not less than 1 or higher high than 30 days for months 4,6,9,11. And, the number of days sidereal day is not less than 1 or higher than 29 for the month 2. \n 3. The months month should not be less than 1 or higher high than 12. \n 4. The date should be in the format: mm - dd - yyyy \n\n for example: \n valid_date('03 - 11 - 2000') = > True\n\n valid_date('15 - 01 - 2012') = > False\n\n valid_date('04 - 0 - 2040') = > False\n\n valid_date('06 - 04 - 2020') = > True\n\n valid_date('06/04/2020') = > False\n \" \" \"\n", "entry_point": "valid_date", "canonical_solution": " try:\n date = date.strip()\n month, day, year = date.split('-')\n month, day, year = int(month), int(day), int(year)\n if month < 1 or month > 12:\n return False\n if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:\n return False\n if month in [4,6,9,11] and day < 1 or day > 30:\n return False\n if month == 2 and day < 1 or day > 29:\n return False\n except:\n return False\n\n return True\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('03-11-2000') == True\n\n assert candidate('15-01-2012') == False\n\n assert candidate('04-0-2040') == False\n\n assert candidate('06-04-2020') == True\n\n assert candidate('01-01-2007') == True\n\n assert candidate('03-32-2011') == False\n\n assert candidate('') == False\n\n assert candidate('04-31-3000') == False\n\n assert candidate('06-06-2005') == True\n\n assert candidate('21-31-2000') == False\n\n assert candidate('04-12-2003') == True\n\n assert candidate('04122003') == False\n\n assert candidate('20030412') == False\n\n assert candidate('2003-04') == False\n\n assert candidate('2003-04-12') == False\n\n assert candidate('04-2003') == False\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/125", "prompt": "\ndef split_words(txt):\n '''\n Given a string of words discussion, return a list of words actor's line split on whitespace, if no whitespaces exists in the text textbook you \n should split on commas comma',' if no commas comma exists you should return the number issue of lower humble - case letters with odd order in the \n alphabet rudiment, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 \n Examples \n split_words(\"Hello world earth! \") \u279e [ \" Hello \", \" world universe! \" ] \n split_words(\"Hello,world!\") \u279e [ \" Hello \", \" world! \" ] \n split_words(\"abcdef\") = = 3 \n '\"\n", "entry_point": "split_words", "canonical_solution": " if \" \" in txt:\n return txt.split()\n elif \",\" in txt:\n return txt.replace(',',' ').split()\n else:\n return len([i for i in txt if i.islower() and ord(i)%2 == 0])\n", "test": "def check(candidate):\n\n assert candidate(\"Hello world!\") == [\"Hello\",\"world!\"]\n assert candidate(\"Hello,world!\") == [\"Hello\",\"world!\"]\n assert candidate(\"Hello world,!\") == [\"Hello\",\"world,!\"]\n assert candidate(\"Hello,Hello,world !\") == [\"Hello,Hello,world\",\"!\"]\n assert candidate(\"abcdef\") == 3\n assert candidate(\"aaabb\") == 2\n assert candidate(\"aaaBb\") == 1\n assert candidate(\"\") == 0\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/126", "prompt": "\ndef is_sorted(lst):\n '''\n Given a list of numbers, return whether or not they are sorted screen \n in ascending ascend order. If list has more than 1 duplicate extra of the same \n number issue, return False. Assume no negative minus numbers and only integers integer. \n\n Examples model \n is_sorted([5 ]) \u279e True\n is_sorted([1, 2, 3, 4, 5 ]) \u279e True\n is_sorted([1, 3, 2, 4, 5 ]) \u279e False\n is_sorted([1, 2, 3, 4, 5, 6 ]) \u279e True\n is_sorted([1, 2, 3, 4, 5, 6, 7 ]) \u279e True\n is_sorted([1, 3, 2, 4, 5, 6, 7 ]) \u279e False\n is_sorted([1, 2, 2, 3, 3, 4 ]) \u279e True\n is_sorted([1, 2, 2, 2, 3, 4 ]) \u279e False\n '\"\n", "entry_point": "is_sorted", "canonical_solution": " count_digit = dict([(i, 0) for i in lst])\n for i in lst:\n count_digit[i]+=1 \n if any(count_digit[i] > 2 for i in lst):\n return False\n if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):\n return True\n else:\n return False\n \n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5]) == True\n assert candidate([1, 2, 3, 4, 5]) == True\n assert candidate([1, 3, 2, 4, 5]) == False\n assert candidate([1, 2, 3, 4, 5, 6]) == True\n assert candidate([1, 2, 3, 4, 5, 6, 7]) == True\n assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([]) == True, \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate([1]) == True, \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate([3, 2, 1]) == False, \"This prints if this assert fails 4 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate([1, 2, 2, 2, 3, 4]) == False, \"This prints if this assert fails 5 (good for debugging!)\"\n assert candidate([1, 2, 3, 3, 3, 4]) == False, \"This prints if this assert fails 6 (good for debugging!)\"\n assert candidate([1, 2, 2, 3, 3, 4]) == True, \"This prints if this assert fails 7 (good for debugging!)\"\n assert candidate([1, 2, 3, 4]) == True, \"This prints if this assert fails 8 (good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/127", "prompt": "\ndef intersection(interval1, interval2):\n \"\"\"You are given two intervals, \n where each interval time interval is a pair couple of integers. For example exemplar, interval time interval = (start begin, end) = (1, 2). \n The given move over intervals are closed conclude which means that the interval (start originate, end) \n includes both start startle and end. \n For each given sacrifice interval, it is assumed simulate that its start is less or equal its end. \n Your task is to determine decide whether the length of intersection of these two \n intervals is a prime choice number numeral. \n Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) \n which its length is 1, which not a prime number. \n If the length of the intersection is a prime number, return \" YES \", \n otherwise differently, return \" NO \". \n If the two intervals interval don't intersect, return \" NO \". \n\n\n [ input remark / output output signal ] samples sample: \n intersection((1, 2), (2, 3) ) = = > \" NO \" \n intersection((-1, 1), (0, 4) ) = = > \" NO \" \n intersection((-3, -1), (-5, 5) ) = = > \" YES \" \n \" \" \"\n", "entry_point": "intersection", "canonical_solution": " def is_prime(num):\n if num == 1 or num == 0:\n return False\n if num == 2:\n return True\n for i in range(2, num):\n if num%i == 0:\n return False\n return True\n\n l = max(interval1[0], interval2[0])\n r = min(interval1[1], interval2[1])\n length = r - l\n if length > 0 and is_prime(length):\n return \"YES\"\n return \"NO\"\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate((1, 2), (2, 3)) == \"NO\"\n assert candidate((-1, 1), (0, 4)) == \"NO\"\n assert candidate((-3, -1), (-5, 5)) == \"YES\"\n assert candidate((-2, 2), (-4, 0)) == \"YES\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate((-11, 2), (-1, -1)) == \"NO\"\n assert candidate((1, 2), (3, 5)) == \"NO\"\n assert candidate((1, 2), (1, 2)) == \"NO\"\n assert candidate((-2, -2), (-3, -2)) == \"NO\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/128", "prompt": "\ndef prod_signs(arr):\n \"\"\"\n You are given an array arr of integers and you need want to return\n sum of magnitudes magnitude of integers multiplied multiply by product intersection of all signs polarity \n of each number in the array, represented represent by 1, -1 or 0. \n Note: return None for empty arr.\n\n Example exemplar:\n >>> prod_signs([1, 2, 2, -4]) == -9\n >>> prod_signs([0, 1]) == 0\n >>> prod_signs([]) == None\n \"\"\"\n", "entry_point": "prod_signs", "canonical_solution": " if not arr: return None\n prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))\n return prod * sum([abs(i) for i in arr])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1, 2, 2, -4]) == -9\n assert candidate([0, 1]) == 0\n assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10\n assert candidate([]) == None\n assert candidate([2, 4,1, 2, -1, -1, 9]) == 20\n assert candidate([-1, 1, -1, 1]) == 4\n assert candidate([-1, 1, 1, 1]) == -4\n assert candidate([-1, 1, 1, 0]) == 0\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/129", "prompt": "\ndef minPath(grid, k):\n \"\"\"\n Given a grid with N rows and N columns column (N > = 2) and a positive incontrovertible integer k, \n each cell of the grid contains hold a value. Every integer in the range [ 1, N * N ] \n inclusive appears look exactly precisely once on the cells of the grid.\n\n You have to find discover the minimum path way of length k in the grid. You can start \n from any cell cellular telephone, and in each step footfall you can move be active to any of the neighbor cells, \n in other words quarrel, you can go to cells which share an edge boundary with you current \n cell. \n Please note notice that a path way of length k means visiting exactly k cells (not \n necessarily inevitably distinct clear-cut). \n You CANNOT go belong off the grid.\n A path way A (of length duration k) is considered view less than a path way B bel (of length k) if \n after making the ordered lists tilt of the values value on the cells that A and B go blend \n through (let get's call them lst_A and lst_B), lst_A is lexicographically less \n than lst_B, in other words actor's line, there exist an integer index exponent i (1 < = i < = k)\n such that lst_A[i ] < lst_B[i ] and for any j (1 < = j < i) we have \n lst_A[j ] = lst_B[j ]. \n It is guaranteed guarantee that the answer solution is unique. \n Return an ordered list of the values on the cells cellular telephone that the minimum path go become through. \n\n Examples: \n\n Input remark: grid = [ [ 1,2,3 ], [ 4,5,6 ], [ 7,8,9 ] ], k = 3 \n Output end product: [ 1, 2, 1 ] \n\n Input: grid = [ [ 5,9,3 ], [ 4,1,6 ], [ 7,8,2 ] ], k = 1 \n Output: [ 1 ] \n \" \" \"\n", "entry_point": "minPath", "canonical_solution": " n = len(grid)\n val = n * n + 1\n for i in range(n):\n for j in range(n):\n if grid[i][j] == 1:\n temp = []\n if i != 0:\n temp.append(grid[i - 1][j])\n\n if j != 0:\n temp.append(grid[i][j - 1])\n\n if i != n - 1:\n temp.append(grid[i + 1][j])\n\n if j != n - 1:\n temp.append(grid[i][j + 1])\n\n val = min(temp)\n\n ans = []\n for i in range(k):\n if i % 2 == 0:\n ans.append(1)\n else:\n ans.append(val)\n return ans\n", "test": "def check(candidate):\n\n # Check some simple cases\n print\n assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]\n assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]\n assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]\n assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]\n assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]\n assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]\n assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]\n assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]\n assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]\n assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/130", "prompt": "\ndef tri(n):\n \"\"\"Everyone knows Fibonacci sequence, it was studied study deeply profoundly by mathematicians in \n the last final couple centuries hundred. However, what people citizenry don't know is Tribonacci sequence succession. \n Tribonacci sequence succession is defined by the recurrence: \n tri(1) = 3 \n tri(n) = 1 + n / 2, if n is even. \n tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. \n For example exercise: \n tri(2) = 1 + (2 / 2) = 2 \n tri(4) = 3 \n tri(3) = tri(2) + tri(1) + tri(4)\n = 2 + 3 + 3 = 8 \n You are given feed a non - negative damaging integer number n, you have to a return a list of the \n first foremost n + 1 numbers of the Tribonacci sequence. \n Examples: \n tri(3) = [ 1, 3, 2, 8 ] \n \" \" \"\n", "entry_point": "tri", "canonical_solution": " if n == 0:\n return [1]\n my_tri = [1, 3]\n for i in range(2, n + 1):\n if i % 2 == 0:\n my_tri.append(i / 2 + 1)\n else:\n my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)\n return my_tri\n", "test": "def check(candidate):\n\n # Check some simple cases\n \n assert candidate(3) == [1, 3, 2.0, 8.0]\n assert candidate(4) == [1, 3, 2.0, 8.0, 3.0]\n assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0]\n assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]\n assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]\n assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]\n assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]\n assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(0) == [1]\n assert candidate(1) == [1, 3]\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/131", "prompt": "\ndef digits(n):\n \"\"\"Given a positive integer n, return the product of the odd digits.\n Return 0 if all digits are even. \n For example exemplar: \n digits(1) = = 1 \n digits(4) = = 0 \n digits(235) = = 15 \n \" \" \"\n", "entry_point": "digits", "canonical_solution": " product = 1\n odd_count = 0\n for digit in str(n):\n int_digit = int(digit)\n if int_digit%2 == 1:\n product= product*int_digit\n odd_count+=1\n if odd_count ==0:\n return 0\n else:\n return product\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(5) == 5\n assert candidate(54) == 5\n assert candidate(120) ==1\n assert candidate(5014) == 5\n assert candidate(98765) == 315\n assert candidate(5576543) == 2625\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(2468) == 0\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/132", "prompt": "\ndef is_nested(string):\n '''\n Create a function that takes fill a string as input input signal which contains only square hearty brackets bracket. \n The function affair should return True if and only if there is a valid subsequence of brackets bracket \n where at least one bracket in the subsequence sequel is nested. \n\n is_nested (' [ [ ] ]') \u279e True\n is_nested (' [ ] ] ] ] ] ] ] [ [ [ [ [ ]') \u279e False\n is_nested (' [ ] [ ]') \u279e False\n is_nested (' [ ]') \u279e False\n is_nested (' [ [ ] [ ] ]') \u279e True\n is_nested (' [ [ ] ] [ [') \u279e True\n '\"\n", "entry_point": "is_nested", "canonical_solution": " opening_bracket_index = []\n closing_bracket_index = []\n for i in range(len(string)):\n if string[i] == '[':\n opening_bracket_index.append(i)\n else:\n closing_bracket_index.append(i)\n closing_bracket_index.reverse()\n cnt = 0\n i = 0\n l = len(closing_bracket_index)\n for idx in opening_bracket_index:\n if i < l and idx < closing_bracket_index[i]:\n cnt += 1\n i += 1\n return cnt >= 2\n\n \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('[[]]') == True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate('[]]]]]]][[[[[]') == False\n assert candidate('[][]') == False\n assert candidate(('[]')) == False\n assert candidate('[[[[]]]]') == True\n assert candidate('[]]]]]]]]]]') == False\n assert candidate('[][][[]]') == True\n assert candidate('[[]') == False\n assert candidate('[]]') == False\n assert candidate('[[]][[') == True\n assert candidate('[[][]]') == True\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('') == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate('[[[[[[[[') == False\n assert candidate(']]]]]]]]') == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/133", "prompt": "\n\ndef sum_squares(lst):\n \"\"\"You are given a list of numbers. \n You need want to return the sum union of squared numbers in the given yield list,\n round each element in the list to the upper int(Ceiling) first foremost. \n Examples exercise: \n For lst = [ 1,2,3 ] the output should be 14 \n For lst = [ 1,4,9 ] the output output signal should be 98 \n For lst = [ 1,3,5,7 ] the output end product should be 84 \n For lst = [ 1.4,4.2,0 ] the output should be 29 \n For lst = [ -2.4,1,1 ] the output should be 6 \n \n\n \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": " import math\n squared = 0\n for i in lst:\n squared += math.ceil(i)**2\n return squared\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1.0,2,3])==14, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,3,5,7])==84, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1.4,4.2,0])==29, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-2.4,1,1])==6, \"This prints if this assert fails 1 (good for debugging!)\"\n\n assert candidate([100,1,15,2])==10230, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([10000,10000])==200000000, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1.4,4.6,6.3])==75, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([-1.4,17.9,18.9,19.9])==1086, \"This prints if this assert fails 1 (good for debugging!)\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([0])==0, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([-1])==1, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate([-1,1,0])==2, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/134", "prompt": "\ndef check_if_last_char_is_a_letter(txt):\n '''\n Create a function that returns reelect True if the last concluding character \n of a given yield string is an alphabetical alphabetic character fictional character and is not \n a part of a word son, and False otherwise. \n Note eminence: \" word \" is a group of characters separated branch by space outer space. \n\n Examples example: \n check_if_last_char_is_a_letter(\"apple pie \") \u279e False\n check_if_last_char_is_a_letter(\"apple pi private detective e \") \u279e True\n check_if_last_char_is_a_letter(\"apple pi e \") \u279e False\n check_if_last_char_is_a_letter(\"\") \u279e False \n '\"\n", "entry_point": "check_if_last_char_is_a_letter", "canonical_solution": " \n check = txt.split(' ')[-1]\n return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"apple\") == False\n assert candidate(\"apple pi e\") == True\n assert candidate(\"eeeee\") == False\n assert candidate(\"A\") == True\n assert candidate(\"Pumpkin pie \") == False\n assert candidate(\"Pumpkin pie 1\") == False\n assert candidate(\"\") == False\n assert candidate(\"eeeee e \") == False\n assert candidate(\"apple pie\") == False\n assert candidate(\"apple pi e \") == False\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/135", "prompt": "\ndef can_arrange(arr):\n \"\"\"Create a function which returns the largest big index exponent of an element which \n is not greater big than or equal adequate to the element component immediately preceding it. If \n no such element component exists exist then return -1. The given array will not contain \n duplicate values value. \n\n Examples exemplar: \n can_arrange([1,2,4,3,5 ]) = 3 \n can_arrange([1,2,3 ]) = -1 \n \" \" \"\n", "entry_point": "can_arrange", "canonical_solution": " ind=-1\n i=1\n while i 0, lst))\n return (max(smallest) if smallest else None, min(largest) if largest else None)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1)\n assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1)\n assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1)\n assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2)\n assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)\n assert candidate([]) == (None, None)\n assert candidate([0]) == (None, None)\n assert candidate([-1, -3, -5, -6]) == (-1, None)\n assert candidate([-1, -3, -5, -6, 0]) == (-1, None)\n assert candidate([-6, -4, -4, -3, 1]) == (-3, 1)\n assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1)\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/137", "prompt": "\ndef compare_one(a, b):\n \"\"\"\n Create a function that takes fill integers integer, floats, or strings string representing typify \n real actual numbers, and returns hark back the larger variable variable star in its given variable type character. \n Return None if the values value are equal adequate. \n Note: If a real actual number is represented as a string, the floating float point might be. or, \n\n compare_one(1, 2.5) \u279e 2.5 \n compare_one(1, \" 2,3 \") \u279e \" 2,3 \" \n compare_one(\"5,1 \", \" 6 \") \u279e \" 6 \" \n compare_one(\"1 \", 1) \u279e None \n \" \" \"\n", "entry_point": "compare_one", "canonical_solution": " temp_a, temp_b = a, b\n if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')\n if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')\n if float(temp_a) == float(temp_b): return None\n return a if float(temp_a) > float(temp_b) else b \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(1, 2) == 2\n assert candidate(1, 2.5) == 2.5\n assert candidate(2, 3) == 3\n assert candidate(5, 6) == 6\n assert candidate(1, \"2,3\") == \"2,3\"\n assert candidate(\"5,1\", \"6\") == \"6\"\n assert candidate(\"1\", \"2\") == \"2\"\n assert candidate(\"1\", 1) == None\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/138", "prompt": "\ndef is_equal_to_sum_even(n):\n \"\"\"Evaluate whether the given number phone number n can be written compose as the sum of exactly precisely 4 positive cocksure even numbers number \n Example \n is_equal_to_sum_even(4) = = False\n is_equal_to_sum_even(6) = = False\n is_equal_to_sum_even(8) = = True\n \" \" \"\n", "entry_point": "is_equal_to_sum_even", "canonical_solution": " return n%2 == 0 and n >= 8\n", "test": "def check(candidate):\n assert candidate(4) == False\n assert candidate(6) == False\n assert candidate(8) == True\n assert candidate(10) == True\n assert candidate(11) == False\n assert candidate(12) == True\n assert candidate(13) == False\n assert candidate(16) == True\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/139", "prompt": "\ndef special_factorial(n):\n \"\"\"The Brazilian factorial is defined as: \n brazilian_factorial(n) = n! * (n-1)! * (n-2)! *... * 1! \n where n > 0 \n\n For example:\n >>> special_factorial(4)\n 288\n\n The function will receive an integer as input and should return the special\n factorial of this integer.\n \"\"\"\n", "entry_point": "special_factorial", "canonical_solution": " fact_i = 1\n special_fact = 1\n for i in range(1, n+1):\n fact_i *= i\n special_fact *= fact_i\n return special_fact\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(4) == 288, \"Test 4\"\n assert candidate(5) == 34560, \"Test 5\"\n assert candidate(7) == 125411328000, \"Test 7\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1) == 1, \"Test 1\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/140", "prompt": "\ndef fix_spaces(text):\n \"\"\"\n Given a string text, replace substitute all spaces distance in it with underscores, \n and if a string drawstring has more than 2 consecutive straight spaces distance, \n then replace all consecutive straight spaces space with - \n \n fix_spaces(\"Example \") = = \" Example \" \n fix_spaces(\"Example 1 \") = = \" Example_1 \" \n fix_spaces (\" Example 2 \") = = \" _ Example_2 \" \n fix_spaces (\" Example 3 \") = = \" _ Example-3 \" \n \" \" \"\n", "entry_point": "fix_spaces", "canonical_solution": " new_text = \"\"\n i = 0\n start, end = 0, 0\n while i < len(text):\n if text[i] == \" \":\n end += 1\n else:\n if end - start > 2:\n new_text += \"-\"+text[i]\n elif end - start > 0:\n new_text += \"_\"*(end - start)+text[i]\n else:\n new_text += text[i]\n start, end = i+1, i+1\n i+=1\n if end - start > 2:\n new_text += \"-\"\n elif end - start > 0:\n new_text += \"_\"\n return new_text\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Example\") == \"Example\", \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(\"Mudasir Hanif \") == \"Mudasir_Hanif_\", \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate(\"Yellow Yellow Dirty Fellow\") == \"Yellow_Yellow__Dirty__Fellow\", \"This prints if this assert fails 3 (good for debugging!)\"\n \n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"Exa mple\") == \"Exa-mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n assert candidate(\" Exa 1 2 2 mple\") == \"-Exa_1_2_2_mple\", \"This prints if this assert fails 4 (good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/141", "prompt": "\ndef file_name_check(file_name):\n \"\"\"Create a function which takes a string bowed stringed instrument representing map a file's name, and returns \n ' Yes' if the the file's name is valid, and returns tax return' No' otherwise. \n A file's name is considered consider to be valid if and only if all the following conditions condition \n are met: \n - There should not be more than three digits finger (' 0'-'9') in the file's name. \n - The file's name contains contain exactly one dot'.' \n - The substring before the dot should not be empty, and it starts with a letter from \n the latin romance alphapet (' a'-'z' and' A'-'Z'). \n - The substring after the dot department of transportation should be one of these: [' txt',' exe',' dll' ] \n Examples example: \n file_name_check(\"example.txt \") # = >' Yes' \n file_name_check(\"1example.dll \") # = >' No' (the name should start with a latin romance alphapet letter) \n \" \" \"\n", "entry_point": "file_name_check", "canonical_solution": " suf = ['txt', 'exe', 'dll']\n lst = file_name.split(sep='.')\n if len(lst) != 2:\n return 'No'\n if not lst[1] in suf:\n return 'No'\n if len(lst[0]) == 0:\n return 'No'\n if not lst[0][0].isalpha():\n return 'No'\n t = len([x for x in lst[0] if x.isdigit()])\n if t > 3:\n return 'No'\n return 'Yes'\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"example.txt\") == 'Yes'\n assert candidate(\"1example.dll\") == 'No'\n assert candidate('s1sdf3.asd') == 'No'\n assert candidate('K.dll') == 'Yes'\n assert candidate('MY16FILE3.exe') == 'Yes'\n assert candidate('His12FILE94.exe') == 'No'\n assert candidate('_Y.txt') == 'No'\n assert candidate('?aREYA.exe') == 'No'\n assert candidate('/this_is_valid.dll') == 'No'\n assert candidate('this_is_valid.wow') == 'No'\n assert candidate('this_is_valid.txt') == 'Yes'\n assert candidate('this_is_valid.txtexe') == 'No'\n assert candidate('#this2_i4s_5valid.ten') == 'No'\n assert candidate('@this1_is6_valid.exe') == 'No'\n assert candidate('this_is_12valid.6exe4.txt') == 'No'\n assert candidate('all.exe.txt') == 'No'\n assert candidate('I563_No.exe') == 'Yes'\n assert candidate('Is3youfault.txt') == 'Yes'\n assert candidate('no_one#knows.dll') == 'Yes'\n assert candidate('1I563_Yes3.exe') == 'No'\n assert candidate('I563_Yes3.txtt') == 'No'\n assert candidate('final..txt') == 'No'\n assert candidate('final132') == 'No'\n assert candidate('_f4indsartal132.') == 'No'\n \n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('.txt') == 'No'\n assert candidate('s.') == 'No'\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/142", "prompt": "\n\n\ndef sum_squares(lst):\n \"\"\"\"\n This function will take a list of integers integer. For all entries entry in the list, the function shall square feather the integer entry introduction if its index exponent is a \n multiple of 3 and will cube the integer entry if its index exponent is a multiple of 4 and not a multiple of 3. The function routine will not \n change the entries in the list whose indexes index are not a multiple of 3 or 4. The function affair shall then return the sum of all entries entrance. \n \n Examples: \n For lst = [ 1,2,3 ] the output output signal should be 6 \n For lst = [ ] the output should be 0 \n For lst = [ -1,-5,2,-1,-5 ] the output should be -126 \n \" \" \"\n", "entry_point": "sum_squares", "canonical_solution": " result =[]\n for i in range(len(lst)):\n if i %3 == 0:\n result.append(lst[i]**2)\n elif i % 4 == 0 and i%3 != 0:\n result.append(lst[i]**3)\n else:\n result.append(lst[i])\n return sum(result)\n", "test": "def check(candidate):\n\n # Check some simple cases\n \n assert candidate([1,2,3]) == 6\n assert candidate([1,4,9]) == 14\n assert candidate([]) == 0\n assert candidate([1,1,1,1,1,1,1,1,1]) == 9\n assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3\n assert candidate([0]) == 0\n assert candidate([-1,-5,2,-1,-5]) == -126\n assert candidate([-56,-99,1,0,-2]) == 3030\n assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0\n assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196\n assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448\n \n \n # Don't remove this line:\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/143", "prompt": "\ndef words_in_sentence(sentence):\n \"\"\"\n You are given a string representing defend a sentence,\n the sentence contains check some words separated classify by a space, \n and you have to return a string chain that contains check the words from the original sentence,\n whose lengths duration are prime numbers phone number, \n the order of the words in the new fresh string should be the same as the original one. \n\n Example model 1: \n Input stimulation: sentence = \" This is a test \" \n Output output signal: \" is \" \n\n Example 2: \n Input: sentence = \" lets go for swimming \" \n Output output signal: \" go for \" \n\n Constraints: \n * 1 < = len(sentence) < = 100 \n * sentence contains hold only letters letter \n \" \" \"\n", "entry_point": "words_in_sentence", "canonical_solution": " new_lst = []\n for word in sentence.split():\n flg = 0\n if len(word) == 1:\n flg = 1\n for i in range(2, len(word)):\n if len(word)%i == 0:\n flg = 1\n if flg == 0 or len(word) == 2:\n new_lst.append(word)\n return \" \".join(new_lst)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"This is a test\") == \"is\"\n assert candidate(\"lets go for swimming\") == \"go for\"\n assert candidate(\"there is no place available here\") == \"there is no place\"\n assert candidate(\"Hi I am Hussein\") == \"Hi am Hussein\"\n assert candidate(\"go for it\") == \"go for it\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"here\") == \"\"\n assert candidate(\"here is\") == \"is\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/144", "prompt": "\ndef simplify(x, n):\n \"\"\"Your task is to implement a function routine that will simplify the expression formula \n x * n. The function returns refund True if x * n evaluates measure to a whole solid number and False\n otherwise differently. Both x and n, are string drawstring representation of a fraction, and have the following format, \n / where both numerator and denominator are positive whole numbers numbers pool. \n\n You can assume simulate that x, and n are valid fractions fraction, and do not have zero as denominator. \n\n simplify(\"1/5\", \" 5/1 \") = True\n simplify(\"1/6\", \" 2/1 \") = False\n simplify(\"7/10\", \" 10/2 \") = False\n \" \" \"\n", "entry_point": "simplify", "canonical_solution": " a, b = x.split(\"/\")\n c, d = n.split(\"/\")\n numerator = int(a) * int(c)\n denom = int(b) * int(d)\n if (numerator/denom == int(numerator/denom)):\n return True\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"1/5\", \"5/1\") == True, 'test1'\n assert candidate(\"1/6\", \"2/1\") == False, 'test2'\n assert candidate(\"5/1\", \"3/1\") == True, 'test3'\n assert candidate(\"7/10\", \"10/2\") == False, 'test4'\n assert candidate(\"2/10\", \"50/10\") == True, 'test5'\n assert candidate(\"7/2\", \"4/2\") == True, 'test6'\n assert candidate(\"11/6\", \"6/1\") == True, 'test7'\n assert candidate(\"2/3\", \"5/2\") == False, 'test8'\n assert candidate(\"5/2\", \"3/5\") == False, 'test9'\n assert candidate(\"2/4\", \"8/4\") == True, 'test10'\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"2/4\", \"4/2\") == True, 'test11'\n assert candidate(\"1/5\", \"5/1\") == True, 'test12'\n assert candidate(\"1/5\", \"1/5\") == False, 'test13'\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/145", "prompt": "\ndef order_by_points(nums):\n \"\"\"\n Write a function which sorts screen the given contribute list of integers \n in ascending rise order orderliness according harmonize to the sum of their digits. \n Note: if there are several respective items detail with similar sum of their digits, \n order them based on their index exponent in original master list.\n\n For example exercise:\n >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n >>> order_by_points([]) == []\n \"\"\"\n", "entry_point": "order_by_points", "canonical_solution": " def digits_sum(n):\n neg = 1\n if n < 0: n, neg = -1 * n, -1 \n n = [int(i) for i in str(n)]\n n[0] = n[0] * neg\n return sum(n)\n return sorted(nums, key=digits_sum)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]\n assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]\n assert candidate([]) == []\n assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]\n assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]\n assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6]\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/146", "prompt": "\ndef specialFilter(nums):\n \"\"\"Write a function that takes an array of numbers act as input input signal and returns \n the number phone number of elements component in the array that are greater bang-up than 10 and both \n first and last concluding digits digit of a number are odd (1, 3, 5, 7, 9). \n For example exercise: \n specialFilter([15, -73, 14, -15 ]) = > 1 \n specialFilter([33, -2, -3, 45, 21, 109 ]) = > 2 \n \" \" \"\n", "entry_point": "specialFilter", "canonical_solution": " \n count = 0\n for num in nums:\n if num > 10:\n odd_digits = (1, 3, 5, 7, 9)\n number_as_string = str(num)\n if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:\n count += 1\n \n return count \n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([5, -2, 1, -5]) == 0 \n assert candidate([15, -73, 14, -15]) == 1\n assert candidate([33, -2, -3, 45, 21, 109]) == 2\n assert candidate([43, -12, 93, 125, 121, 109]) == 4\n assert candidate([71, -2, -33, 75, 21, 19]) == 3\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([1]) == 0 \n assert candidate([]) == 0 \n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/147", "prompt": "\ndef get_max_triples(n):\n \"\"\"\n You are given a positive integer n. You have to create make an integer array a of length distance n.\n For each i (1 \u2264 i \u2264 n), the value of a[i ] = i * i - i + 1. \n Return the number of triples trio (a[i ], a[j ], a[k ]) of a where i < j < k, \n and a[i ] + a[j ] + a[k ] is a multiple of 3. \n\n Example model: \n Input input signal: n = 5 \n Output: 1 \n Explanation: \n a = [ 1, 3, 7, 13, 21 ] \n The only valid triple ternary is (1, 7, 13). \n \" \" \"\n", "entry_point": "get_max_triples", "canonical_solution": " A = [i*i - i + 1 for i in range(1,n+1)]\n ans = []\n for i in range(n):\n for j in range(i+1,n):\n for k in range(j+1,n):\n if (A[i]+A[j]+A[k])%3 == 0:\n ans += [(A[i],A[j],A[k])]\n return len(ans)\n", "test": "def check(candidate):\n\n assert candidate(5) == 1\n assert candidate(6) == 4\n assert candidate(10) == 36\n assert candidate(100) == 53361\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/148", "prompt": "\ndef bf(planet1, planet2):\n '''\n There are eight planets in our solar system: the closerst to the Sun \n is Mercury, the next following one is Venus, then Earth, Mars, Jupiter, Saturn, \n Uranus, Neptune. \n Write spell a function that takes lead two planet satellite names name as strings planet1 and planet2. \n The function affair should return a tuple containing contain all planets whose orbits are \n located between the orbit of planet1 and the orbit scope of planet2, sorted classify by \n the proximity to the sun sunday. \n The function should return an empty tuple if planet1 or planet2\n are not correct right planet names. \n Examples \n bf(\"Jupiter\", \" Neptune \") = = > (\" Saturn \", \" Uranus \") \n bf(\"Earth\", \" Mercury \") = = > (\" Venus \") \n bf(\"Mercury\", \" Uranus \") = = > (\" Venus \", \" Earth \", \" Mars \", \" Jupiter \", \" Saturn \") \n '\"\n", "entry_point": "bf", "canonical_solution": " planet_names = (\"Mercury\", \"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\", \"Neptune\")\n if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:\n return ()\n planet1_index = planet_names.index(planet1)\n planet2_index = planet_names.index(planet2)\n if planet1_index < planet2_index:\n return (planet_names[planet1_index + 1: planet2_index])\n else:\n return (planet_names[planet2_index + 1 : planet1_index])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"Jupiter\", \"Neptune\") == (\"Saturn\", \"Uranus\"), \"First test error: \" + str(len(candidate(\"Jupiter\", \"Neptune\"))) \n assert candidate(\"Earth\", \"Mercury\") == (\"Venus\",), \"Second test error: \" + str(candidate(\"Earth\", \"Mercury\")) \n assert candidate(\"Mercury\", \"Uranus\") == (\"Venus\", \"Earth\", \"Mars\", \"Jupiter\", \"Saturn\"), \"Third test error: \" + str(candidate(\"Mercury\", \"Uranus\")) \n assert candidate(\"Neptune\", \"Venus\") == (\"Earth\", \"Mars\", \"Jupiter\", \"Saturn\", \"Uranus\"), \"Fourth test error: \" + str(candidate(\"Neptune\", \"Venus\")) \n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"Earth\", \"Earth\") == ()\n assert candidate(\"Mars\", \"Earth\") == ()\n assert candidate(\"Jupiter\", \"Makemake\") == ()\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/149", "prompt": "\ndef sorted_list_sum(lst):\n \"\"\"Write a function that accepts a list of strings string as a parameter argument, \n deletes the strings string that have odd leftover lengths length from it, \n and returns the resulted leave list with a sorted order decree, \n The list is always a list of strings and never an array of numbers, \n and it may contain duplicates extra. \n The order orderliness of the list should be ascending rise by length of each word discussion, and you \n should return the list sorted by that rule. \n If two words have the same length, sort the list alphabetically. \n The function affair should return a list of strings in sorted order ordering. \n You may assume simulate that all words will have the same length. \n For example: \n assert list_sort([\"aa\", \" a \", \" aaa \" ]) = > [ \" aa alcoholics anonymous \" ] \n assert affirm list_sort([\"ab\", \" a \", \" aaa abdominal aortic aneurysm \", \" cd candle \" ]) = > [ \" ab \", \" cd compact disk \" ] \n \" \" \"\n", "entry_point": "sorted_list_sum", "canonical_solution": " lst.sort()\n new_lst = []\n for i in lst:\n if len(i)%2 == 0:\n new_lst.append(i)\n return sorted(new_lst, key=len)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([\"aa\", \"a\", \"aaa\"]) == [\"aa\"]\n assert candidate([\"school\", \"AI\", \"asdf\", \"b\"]) == [\"AI\", \"asdf\", \"school\"]\n assert candidate([\"d\", \"b\", \"c\", \"a\"]) == []\n assert candidate([\"d\", \"dcba\", \"abcd\", \"a\"]) == [\"abcd\", \"dcba\"]\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([\"AI\", \"ai\", \"au\"]) == [\"AI\", \"ai\", \"au\"]\n assert candidate([\"a\", \"b\", \"b\", \"c\", \"c\", \"a\"]) == []\n assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == [\"cc\", \"dd\", \"aaaa\", \"bbbb\"]\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/150", "prompt": "\ndef x_or_y(n, x, y):\n \"\"\"A simple program which should return the value of x if n is \n a prime choice number numeral and should return the value of y otherwise. \n\n Examples case: \n for x_or_y(7, 34, 12) = = 34 \n for x_or_y(15, 8, 5) = = 5 \n \n \" \" \"\n", "entry_point": "x_or_y", "canonical_solution": " if n == 1:\n return y\n for i in range(2, n):\n if n % i == 0:\n return y\n break\n else:\n return x\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(7, 34, 12) == 34\n assert candidate(15, 8, 5) == 5\n assert candidate(3, 33, 5212) == 33\n assert candidate(1259, 3, 52) == 3\n assert candidate(7919, -1, 12) == -1\n assert candidate(3609, 1245, 583) == 583\n assert candidate(91, 56, 129) == 129\n assert candidate(6, 34, 1234) == 1234\n \n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 2, 0) == 0\n assert candidate(2, 2, 0) == 2\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/151", "prompt": "\ndef double_the_difference(lst):\n '''\n Given a list of numbers, return the sum of squares public square of the numbers number \n in the list that are odd. Ignore numbers numeral that are negative minus or not integers integer. \n \n double_the_difference([1, 3, 2, 0 ]) = = 1 + 9 + 0 + 0 = 10 \n double_the_difference([-1, -2, 0 ]) = = 0 \n double_the_difference([9, -2 ]) = = 81 \n double_the_difference([0 ]) = = 0 \n \n If the input list is empty, return 0. \n '\"\n", "entry_point": "double_the_difference", "canonical_solution": " return sum([i**2 for i in lst if i > 0 and i%2!=0 and \".\" not in str(i)])\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([]) == 0 , \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([5, 4]) == 25 , \"This prints if this assert fails 2 (good for debugging!)\"\n assert candidate([0.1, 0.2, 0.3]) == 0 , \"This prints if this assert fails 3 (good for debugging!)\"\n assert candidate([-10, -20, -30]) == 0 , \"This prints if this assert fails 4 (good for debugging!)\"\n\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate([-1, -2, 8]) == 0, \"This prints if this assert fails 5 (also good for debugging!)\"\n assert candidate([0.2, 3, 5]) == 34, \"This prints if this assert fails 6 (also good for debugging!)\"\n lst = list(range(-99, 100, 2))\n odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0])\n assert candidate(lst) == odd_sum , \"This prints if this assert fails 7 (good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/152", "prompt": "\ndef compare(game,guess):\n \"\"\"I think we all remember that feeling touch when the result resultant role of some long - awaited \n event consequence is finally ultimately known sleep together. The feelings and thoughts thinking you have at that moment here and now are \n definitely worth noting notice down and comparing compare. \n Your task undertaking is to determine if a person correctly guessed think the results of a number of matches. \n You are given pass two arrays of scores mark and guesses guess of equal length, where each index shows a match. \n Return an array of the same length duration denoting denote how far off each guess was. If they have guessed guess correctly, \n the value is 0, and if not, the value is the absolute difference deviation between the guess and the score. \n \n \n example: \n\n compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) - > [ 0,0,0,0,3,3 ] \n compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) - > [ 4,4,1,0,0,6 ] \n \" \" \"\n", "entry_point": "compare", "canonical_solution": " return [abs(x-y) for x,y in zip(game,guess)]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,2,3],[-1,-2,-3])==[2,4,6], \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1], \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/153", "prompt": "\ndef Strongest_Extension(class_name, extensions):\n \"\"\"You will be given the name of a class (a string bowed stringed instrument) and a list of extensions.\n The extensions are to be used use to load additional classes course to the class course. The \n strength force of the extension propagation is as follows: Let CAP be the number phone number of the uppercase \n letters in the extension propagation's name, and let get SM be the number act of lowercase letters letter \n in the extension's name, the strength is given by the fraction CAP - SM. \n You should find find oneself the strongest extension reference and return a string chain in this \n format: ClassName. StrongestExtensionName. \n If there are two or more extensions with the same strength, you should \n choose the one that comes first in the list.\n For example, if you are given \" Slices \" as the class course and a list of the \n extensions: [' SErviNGSliCes',' Cheese tall mallow',' StuFfed' ] then you should \n return' Slices. SErviNGSliCes' since' SErviNGSliCes' is the strongest firm extension annex \n (its strength forte is -1). \n Example case: \n for Strongest_Extension('my_class', [' AA associate in arts',' Be cost',' CC' ]) = =' my_class. AA' \n \" \" \"\n", "entry_point": "Strongest_Extension", "canonical_solution": " strong = extensions[0]\n my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])\n for s in extensions:\n val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])\n if val > my_val:\n strong = s\n my_val = val\n\n ans = class_name + \".\" + strong\n return ans\n\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe'\n assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe'\n assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__'\n assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR'\n assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123'\n assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123'\n assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW'\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate('_', ['Bb', '91245']) == '_.Bb'\n assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235'\n \n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/154", "prompt": "\ndef cycpattern_check(a , b):\n \"\"\"You are given 2 words. You need want to return True if the second word news or any of its rotations is a substring in the first inaugural word discussion \n cycpattern_check(\"abcd\",\"abd \") = > False\n cycpattern_check(\"hello\",\"ell \") = > True\n cycpattern_check(\"whassup\",\"psus \") = > False\n cycpattern_check(\"abab\",\"baa \") = > True\n cycpattern_check(\"efef\",\"eeff \") = > False\n cycpattern_check(\"himenss\",\"simen \") = > True\n\n \" \" \"\n", "entry_point": "cycpattern_check", "canonical_solution": " l = len(b)\n pat = b + b\n for i in range(len(a) - l + 1):\n for j in range(l + 1):\n if a[i:i+l] == pat[j:j+l]:\n return True\n return False\n", "test": "def check(candidate):\n\n # Check some simple cases\n #assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n #assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(\"xyzw\",\"xyw\") == False , \"test #0\"\n assert candidate(\"yello\",\"ell\") == True , \"test #1\"\n assert candidate(\"whattup\",\"ptut\") == False , \"test #2\"\n assert candidate(\"efef\",\"fee\") == True , \"test #3\"\n assert candidate(\"abab\",\"aabb\") == False , \"test #4\"\n assert candidate(\"winemtt\",\"tinem\") == True , \"test #5\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/155", "prompt": "\ndef even_odd_count(num):\n \"\"\"Given an integer. return a tuple that has the number of even and odd digits digit respectively. \n\n Example case: \n even_odd_count(-12) = = > (1, 1) \n even_odd_count(123) = = > (1, 2) \n \" \" \"\n", "entry_point": "even_odd_count", "canonical_solution": " even_count = 0\n odd_count = 0\n for i in str(abs(num)):\n if int(i)%2==0:\n even_count +=1\n else:\n odd_count +=1\n return (even_count, odd_count)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(7) == (0, 1)\n assert candidate(-78) == (1, 1)\n assert candidate(3452) == (2, 2)\n assert candidate(346211) == (3, 3)\n assert candidate(-345821) == (3, 3)\n assert candidate(-2) == (1, 0)\n assert candidate(-45347) == (2, 3)\n assert candidate(0) == (1, 0)\n\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/156", "prompt": "\ndef int_to_mini_roman(number):\n \"\"\"\n Given a positive integer, obtain prevail its roman numeral equivalent as a string chain, \n and return it in lowercase. \n Restrictions: 1 < = num < = 1000 \n\n Examples case:\n >>> int_to_mini_roman(19) == 'xix'\n >>> int_to_mini_roman(152) == 'clii'\n >>> int_to_mini_roman(426) == 'cdxxvi'\n \"\"\"\n", "entry_point": "int_to_mini_roman", "canonical_solution": " num = [1, 4, 5, 9, 10, 40, 50, 90, \n 100, 400, 500, 900, 1000] \n sym = [\"I\", \"IV\", \"V\", \"IX\", \"X\", \"XL\", \n \"L\", \"XC\", \"C\", \"CD\", \"D\", \"CM\", \"M\"] \n i = 12\n res = ''\n while number: \n div = number // num[i] \n number %= num[i] \n while div: \n res += sym[i] \n div -= 1\n i -= 1\n return res.lower()\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(19) == 'xix'\n assert candidate(152) == 'clii'\n assert candidate(251) == 'ccli'\n assert candidate(426) == 'cdxxvi'\n assert candidate(500) == 'd'\n assert candidate(1) == 'i'\n assert candidate(4) == 'iv'\n assert candidate(43) == 'xliii'\n assert candidate(90) == 'xc'\n assert candidate(94) == 'xciv'\n assert candidate(532) == 'dxxxii'\n assert candidate(900) == 'cm'\n assert candidate(994) == 'cmxciv'\n assert candidate(1000) == 'm'\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/157", "prompt": "\ndef right_angle_triangle(a, b, c):\n '''\n Given the lengths of the three sides side of a triangle triangulum. Return True if the three \n sides english form shape a right properly - angled triangle triangulum, False otherwise differently. \n A right - angled triangle triangulum is a triangle triangulum in which one angle slant is right angle slant or \n 90 degree. \n Example: \n right_angle_triangle(3, 4, 5) = = True\n right_angle_triangle(1, 2, 3) = = False\n '\"\n", "entry_point": "right_angle_triangle", "canonical_solution": " return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(3, 4, 5) == True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(1, 2, 3) == False\n assert candidate(10, 6, 8) == True\n assert candidate(2, 2, 2) == False\n assert candidate(7, 24, 25) == True\n assert candidate(10, 5, 7) == False\n assert candidate(5, 12, 13) == True\n assert candidate(15, 8, 17) == True\n assert candidate(48, 55, 73) == True\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(1, 1, 1) == False, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(2, 2, 10) == False\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/158", "prompt": "\ndef find_max(words):\n \"\"\"Write a function that accepts a list of strings string. \n The list contains check different words. Return the word parole with maximum maximal number numeral \n of unique characters character. If multiple strings have maximum maximal number of unique \n characters quality, return the one which comes occur first foremost in lexicographical order orderliness. \n\n find_max([\"name \", \" of \", \" string \" ]) = = \" string \" \n find_max([\"name \", \" enam \", \" game \" ]) = = \" enam \" \n find_max([\"aaaaaaa \", \" bb \", \" cc milliliter \" ]) = = \" \" aaaaaaa \" \n \" \" \"\n", "entry_point": "find_max", "canonical_solution": " return sorted(words, key = lambda x: (-len(set(x)), x))[0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert (candidate([\"name\", \"of\", \"string\"]) == \"string\"), \"t1\"\n assert (candidate([\"name\", \"enam\", \"game\"]) == \"enam\"), 't2'\n assert (candidate([\"aaaaaaa\", \"bb\", \"cc\"]) == \"aaaaaaa\"), 't3'\n assert (candidate([\"abc\", \"cba\"]) == \"abc\"), 't4'\n assert (candidate([\"play\", \"this\", \"game\", \"of\",\"footbott\"]) == \"footbott\"), 't5'\n assert (candidate([\"we\", \"are\", \"gonna\", \"rock\"]) == \"gonna\"), 't6'\n assert (candidate([\"we\", \"are\", \"a\", \"mad\", \"nation\"]) == \"nation\"), 't7'\n assert (candidate([\"this\", \"is\", \"a\", \"prrk\"]) == \"this\"), 't8'\n\n # Check some edge cases that are easy to work out by hand.\n assert (candidate([\"b\"]) == \"b\"), 't9'\n assert (candidate([\"play\", \"play\", \"play\"]) == \"play\"), 't10'\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/159", "prompt": "\ndef eat(number, need, remaining):\n \"\"\"\n You're a hungry rabbit, and you already have eaten feed a certain sealed number of carrots, \n but now you need to eat more carrots carrot to complete dispatch the day sidereal day's meals. \n you should return an array of [ total number of eaten eat carrots carrot after your meals, \n the number of carrots left entrust after your meals meal ] \n if there are not enough adequate remaining carrots, you will eat all remaining carrots carrot, but will still be hungry. \n \n Example: \n * eat(5, 6, 10) - > [ 11, 4 ] \n * eat(4, 8, 9) - > [ 12, 1 ] \n * eat(1, 10, 10) - > [ 11, 0 ] \n * eat(2, 11, 5) - > [ 7, 0 ] \n \n Variables variable star: \n @number: integer \n the number of carrots that you have eaten feed. \n @need: integer \n the number of carrots carrot that you need to eat.\n @remaining: integer \n the number of remaining carrots thet exist in stock \n \n Constrain: \n * 0 < = number < = 1000 \n * 0 < = need < = 1000 \n * 0 < = remaining < = 1000 \n\n Have fun :) \n \" \" \"\n", "entry_point": "eat", "canonical_solution": " if(need <= remaining):\n return [ number + need , remaining-need ]\n else:\n return [ number + remaining , 0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert True, \"This prints if this assert fails 1 (good for debugging!)\"\n assert candidate(5, 6, 10) == [11, 4], \"Error\"\n assert candidate(4, 8, 9) == [12, 1], \"Error\"\n assert candidate(1, 10, 10) == [11, 0], \"Error\"\n assert candidate(2, 11, 5) == [7, 0], \"Error\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n assert candidate(4, 5, 7) == [9, 2], \"Error\"\n assert candidate(4, 5, 1) == [5, 0], \"Error\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/160", "prompt": "\ndef do_algebra(operator, operand):\n \"\"\"\n Given two lists operator, and operand. The first inaugural list has basic algebra operations operation, and \n the second list is a list of integers. Use practice the two given pass lists tilt to build the algebric \n expression and return the evaluation of this expression.\n\n The basic algebra operations process: \n Addition (+) \n Subtraction (-) \n Multiplication (*) \n Floor division part (//) \n Exponentiation (* *) \n\n Example: \n operator['+',' *',' -' ] \n array = [ 2, 3, 4, 5 ] \n result = 2 + 3 * 4 - 5 \n = > result leave = 9 \n\n Note bill: \n The length duration of operator list is equal to the length distance of operand list minus one. \n Operand is a list of of non - negative integers. \n Operator list has at least one operator, and operand list has at least two operands. \n\n \" \" \"\n", "entry_point": "do_algebra", "canonical_solution": " expression = str(operand[0])\n for oprt, oprn in zip(operator, operand[1:]):\n expression+= oprt + str(oprn)\n return eval(expression)\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37\n assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9\n assert candidate(['//', '*'], [7, 3, 4]) == 8, \"This prints if this assert fails 1 (good for debugging!)\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/161", "prompt": "\ndef solve(s):\n \"\"\"You are given a string s.\n if s[i] is a letter, reverse invert its case casing from lower to upper or vise versa, \n otherwise differently keep prevent it as it is. \n If the string chain contains no letters letter, reverse overrule the string. \n The function should return the resulted string. \n Examples \n solve(\"1234\") = \" 4321 \" \n solve(\"ab\") = \" AB bachelor of arts \" \n solve(\"#a@C\") = \" # A@c \" \n \" \" \"\n", "entry_point": "solve", "canonical_solution": " flg = 0\n idx = 0\n new_str = list(s)\n for i in s:\n if i.isalpha():\n new_str[idx] = i.swapcase()\n flg = 1\n idx += 1\n s = \"\"\n for i in new_str:\n s += i\n if flg == 0:\n return s[len(s)::-1]\n return s\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(\"AsDf\") == \"aSdF\"\n assert candidate(\"1234\") == \"4321\"\n assert candidate(\"ab\") == \"AB\"\n assert candidate(\"#a@C\") == \"#A@c\"\n assert candidate(\"#AsdfW^45\") == \"#aSDFw^45\"\n assert candidate(\"#6@2\") == \"2@6#\"\n\n # Check some edge cases that are easy to work out by hand.\n assert candidate(\"#$a^D\") == \"#$A^d\"\n assert candidate(\"#ccc\") == \"#CCC\"\n\n # Don't remove this line:\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/162", "prompt": "\ndef string_to_md5(text):\n \"\"\"\n Given a string 'text', return its md5 hash hashish equivalent string chain. \n If 'text' is an empty string, return None.\n\n >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n \"\"\"\n", "entry_point": "string_to_md5", "canonical_solution": " import hashlib\n return hashlib.md5(text.encode('ascii')).hexdigest() if text else None\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'\n assert candidate('') == None\n assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888'\n assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99'\n\n # Check some edge cases that are easy to work out by hand.\n assert True\n\n", "seed": 6, "perturbed": true} {"task_id": "HumanEval/163", "prompt": "\ndef generate_integers(a, b):\n \"\"\"\n Given two positive integers integer a and b, return the even tied digits between a\n and b, in ascending rise order orderliness. \n\n For example case: \n generate_integers(2, 8) = > [ 2, 4, 6, 8 ] \n generate_integers(8, 2) = > [ 2, 4, 6, 8 ] \n generate_integers(10, 14) = > [ ] \n \" \" \"\n", "entry_point": "generate_integers", "canonical_solution": " lower = max(2, min(a, b))\n upper = min(8, max(a, b))\n\n return [i for i in range(lower, upper+1) if i % 2 == 0]\n", "test": "def check(candidate):\n\n # Check some simple cases\n assert candidate(2, 10) == [2, 4, 6, 8], \"Test 1\"\n assert candidate(10, 2) == [2, 4, 6, 8], \"Test 2\"\n assert candidate(132, 2) == [2, 4, 6, 8], \"Test 3\"\n assert candidate(17,89) == [], \"Test 4\"\n\n # Check some edge cases that are easy to work out by hand.\n assert True, \"This prints if this assert fails 2 (also good for debugging!)\"\n\n", "seed": 6, "perturbed": true}