# Copyright 2024 The YourMT3 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Please see the details in the LICENSE file. import math from typing import Optional, Union from torch import nn from transformers.configuration_utils import PretrainedConfig from transformers.modeling_utils import PreTrainedModel class ConformerYMT3Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ConformerYMT3Encoder`]. It is used to instantiate an ConformerYMT3Encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer [facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: d_model (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. num_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. dropout_rate (`float`, *optional*, defaults to 0.05): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. position_encoding_type (`str`, *optional*, defaults to `"relative"`): Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left `None` no relative position embedding is applied. rotary_embedding_base (`int`, *optional*, defaults to 10000): If `"rotary"` position embeddings are used, defines the size of the embedding base. num_max_positions (`int`, *optional*, defaults to 5000): if `"relative"` position embeddings are used, defines the maximum source input positions. conv_depthwise_kernel_size (`int`, defaults to 31): Kernel size of convolutional depthwise 1D layer in Conformer blocks. Example: ```python >>> from transformers import ConformerYMT3Config, ConformerYMT3Encoder >>> # Initializing a ConformerYMT3Encoder configuration >>> configuration = ConformerYMT3Config() >>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration >>> model = ConformerYMT3Encoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "conformer-ymt3" def __init__( self, d_model=512, # 768 num_layers=8, # ConformerYMT3Encoder num_heads=8, # ConformerYMT3SelfAttention intermediate_size=2048, # 3072,# used in intermediate_dense of ConformerYMT3FeedForward hidden_act="gelu", # used in intermediate_act_fn of ConformerYMT3FeedForward dropout_rate=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 3, 3), conv_bias=False, position_encoding_type="rotary", rotary_embedding_base=10000, num_max_positions=1024, conv_depthwise_kernel_size=31, **kwargs, ): super().__init__(**kwargs) self.d_model = d_model self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_layers = num_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_heads = num_heads self.dropout_rate = dropout_rate self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.num_max_positions = num_max_positions self.position_encoding_type = position_encoding_type self.rotary_embedding_base = rotary_embedding_base # Conformer-block related self.conv_depthwise_kernel_size = conv_depthwise_kernel_size class ConformerYMT3PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConformerYMT3Config base_model_prefix = "wav2vec2_conformer" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if module.__class__.__name__ == "ConformerYMT3SelfAttention": if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _set_gradient_checkpointing(self, module, value=False): if module.__class__.__name__ == "ConformerYMT3Encoder": module.gradient_checkpointing = value