from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{burchell-etal-2023-open, title = "An Open Dataset and Model for Language Identification", author = "Burchell, Laurie and Birch, Alexandra and Bogoychev, Nikolay and Heafield, Kenneth", editor = "Rogers, Anna and Boyd-Graber, Jordan and Okazaki, Naoaki", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-short.75", doi = "10.18653/v1/2023.acl-short.75", pages = "865--879", abstract = "Language identification (LID) is a fundamental step in many natural language processing pipelines. However, current LID systems are far from perfect, particularly on lower-resource languages. We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033{\%} across 201 languages, outperforming previous work. We achieve this by training on a curated dataset of monolingual data, which we audit manually to ensure reliability. We make both the model and the dataset available to the research community. Finally, we carry out detailed analysis into our model{'}s performance, both in comparison to existing open models and by language class.", } """ _LOCAL = False _LANGUAGES = ["ace", "ban", "bjn", "bug", "ceb", "ilo", "ind", "jav", "kac", "khm", "lao", "min", "lus", "mya", "pag", "shn", "sun", "tgl", "tha", "vie", "war", "zsm"] _DATASETNAME = "openlid" _DESCRIPTION = """\ This is an open dataset for language identification covering 201 languages, which are curated and audited manually to ensure high confidence in its data and language labels. 22 languages are native to Southeast Asia speakers. """ _HOMEPAGE = "https://github.com/laurieburchell/open-lid-dataset" _LICENSE = Licenses.GPL_3_0.value _URLS = { _DATASETNAME: "https://data.statmt.org/lid/lid201-data.tsv.gz", } _SUPPORTED_TASKS = [Tasks.LANGUAGE_IDENTIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" # 201 languages. Each element contains a code for the language, and script (e.g. wol_Latn = Wolof in Latin script) _TAGS = ['kbp_Latn', 'zul_Latn', 'zho_Hans', 'uig_Arab', 'smo_Latn', 'hrv_Latn', 'tgk_Cyrl', 'guj_Gujr', 'azj_Latn', 'mai_Deva', 'bul_Cyrl', 'hne_Deva', 'wol_Latn', 'ind_Latn', 'lit_Latn', 'epo_Latn', 'prs_Arab', 'kmr_Latn', 'fao_Latn', 'swh_Latn', 'slk_Latn', 'srp_Cyrl', 'bod_Tibt', 'eus_Latn', 'tir_Ethi', 'tam_Taml', 'kas_Deva', 'glg_Latn', 'crh_Latn', 'kon_Latn', 'ayr_Latn', 'por_Latn', 'ben_Beng', 'zho_Hant', 'bug_Latn', 'umb_Latn', 'tzm_Tfng', 'kan_Knda', 'tgl_Latn', 'luo_Latn', 'lij_Latn', 'hun_Latn', 'kin_Latn', 'hat_Latn', 'sag_Latn', 'khm_Khmr', 'heb_Hebr', 'hye_Armn', 'fuv_Latn', 'cjk_Latn', 'ckb_Arab', 'srd_Latn', 'cat_Latn', 'dan_Latn', 'lao_Laoo', 'fra_Latn', 'kam_Latn', 'aeb_Arab', 'ydd_Hebr', 'afr_Latn', 'khk_Cyrl', 'lug_Latn', 'lin_Latn', 'nya_Latn', 'tsn_Latn', 'dzo_Tibt', 'min_Latn', 'war_Latn', 'rus_Cyrl', 'nob_Latn', 'tpi_Latn', 'mlt_Latn', 'mni_Beng', 'ilo_Latn', 'amh_Ethi', 'taq_Latn', 'acq_Arab', 'gaz_Latn', 'ltg_Latn', 'kac_Latn', 'ibo_Latn', 'gle_Latn', 'mya_Mymr', 'grn_Latn', 'kik_Latn', 'jav_Latn', 'awa_Deva', 'ars_Arab', 'swe_Latn', 'uzn_Latn', 'mos_Latn', 'lus_Latn', 'mal_Mlym', 'ita_Latn', 'dik_Latn', 'ewe_Latn', 'sat_Olck', 'pan_Guru', 'est_Latn', 'kab_Latn', 'bam_Latn', 'pag_Latn', 'isl_Latn', 'eng_Latn', 'fon_Latn', 'kas_Arab', 'asm_Beng', 'lim_Latn', 'bjn_Arab', 'taq_Tfng', 'deu_Latn', 'pbt_Arab', 'pap_Latn', 'quy_Latn', 'kea_Latn', 'npi_Deva', 'xho_Latn', 'shn_Mymr', 'nso_Latn', 'urd_Arab', 'bos_Latn', 'ron_Latn', 'fur_Latn', 'gla_Latn', 'nus_Latn', 'ltz_Latn', 'arz_Arab', 'bem_Latn', 'fin_Latn', 'kir_Cyrl', 'tha_Thai', 'mag_Deva', 'azb_Arab', 'tel_Telu', 'ell_Grek', 'sot_Latn', 'spa_Latn', 'vie_Latn', 'yor_Latn', 'ceb_Latn', 'vec_Latn', 'sin_Sinh', 'pol_Latn', 'als_Latn', 'lmo_Latn', 'scn_Latn', 'ces_Latn', 'fij_Latn', 'run_Latn', 'som_Latn', 'mkd_Cyrl', 'mar_Deva', 'ast_Latn', 'san_Deva', 'ary_Arab', 'twi_Latn', 'acm_Arab', 'nno_Latn', 'zsm_Latn', 'mri_Latn', 'kor_Hang', 'sna_Latn', 'pes_Arab', 'ace_Latn', 'bak_Cyrl', 'kat_Geor', 'tur_Latn', 'jpn_Jpan', 'arb_Arab', 'ukr_Cyrl', 'yue_Hant', 'kaz_Cyrl', 'hau_Latn', 'nld_Latn', 'oci_Latn', 'apc_Arab', 'tum_Latn', 'ace_Arab', 'dyu_Latn', 'knc_Latn', 'knc_Arab', 'kmb_Latn', 'bel_Cyrl', 'slv_Latn', 'lvs_Latn', 'bho_Deva', 'tuk_Latn', 'snd_Arab', 'sun_Latn', 'lua_Latn', 'ajp_Arab', 'hin_Deva', 'tso_Latn', 'tat_Cyrl', 'cym_Latn', 'ory_Orya', 'ban_Latn', 'szl_Latn', 'plt_Latn', 'bjn_Latn', 'ssw_Latn'] class OpenLID(datasets.GeneratorBasedBuilder): """This is an open dataset for language identification covering 201 languages. 22 languages are native to Southeast Asia speakers.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="openlid_source", version=SOURCE_VERSION, description="OpenLID source schema", schema="source", subset_id="openlid", ), SEACrowdConfig( name="openlid_seacrowd_text", version=SEACROWD_VERSION, description="OpenLID Nusantara schema", schema="seacrowd_text", subset_id="openlid", ), ] DEFAULT_CONFIG_NAME = "openlid_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string"), "source": datasets.Value("string")}) elif self.config.schema == "seacrowd_text": features = schemas.text_features(_TAGS) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" # Dataset does not have predetermined split, putting all as TRAIN urls = _URLS[_DATASETNAME] filepath = Path(dl_manager.download_and_extract(urls)) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": filepath, }, ), ] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" # Dataset does not have id, using row index as id with open(filepath) as f: lines = f.readlines() if self.config.schema == "source": for _id, line in enumerate(lines): line = line.split("\t") ex = { "id": str(_id), "text": line[0], "label": line[1], "source": line[2].strip(), } yield _id, ex elif self.config.schema == "seacrowd_text": for _id, line in enumerate(lines): line = line.split("\t") ex = { "id": str(_id), "text": line[0], "label": line[1], } yield _id, ex else: raise ValueError(f"Invalid config: {self.config.name}")