# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SAMSum dataset.""" import json import py7zr import datasets _CITATION = """ @article{gliwa2019samsum, title={SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization}, author={Gliwa, Bogdan and Mochol, Iwona and Biesek, Maciej and Wawer, Aleksander}, journal={arXiv preprint arXiv:1911.12237}, year={2019} } """ _DESCRIPTION = """ SAMSum Corpus contains over 16k chat dialogues with manually annotated summaries. There are two features: - dialogue: text of dialogue. - summary: human written summary of the dialogue. - id: id of a example. """ _HOMEPAGE = "https://arxiv.org/abs/1911.12237" _LICENSE = "CC BY-NC-ND 4.0" _URL = "https://huggingface.co/datasets/samsum/resolve/main/data/corpus.7z" class Samsum(datasets.GeneratorBasedBuilder): """SAMSum Corpus dataset.""" VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="samsum"), ] def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "dialogue": datasets.Value("string"), "summary": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" path = dl_manager.download(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": (path, "train.json"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": (path, "test.json"), "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": (path, "val.json"), "split": "val", }, ), ] def _generate_examples(self, filepath, split): """Yields examples.""" path, fname = filepath with open(path, "rb") as f: with py7zr.SevenZipFile(f, "r") as z: for name, bio in z.readall().items(): if name == fname: data = json.load(bio) for example in data: yield example["id"], example