import dgl from dgl.data import AmazonCoBuyPhotoDataset import torch import pickle from copy import deepcopy import scipy.sparse as sp import numpy as np import os def mask_test_edges(adj_orig, val_frac, test_frac): # Remove diagonal elements adj = deepcopy(adj_orig) # set diag as all zero adj.setdiag(0) adj.eliminate_zeros() # Check that diag is zero: # assert np.diag(adj.todense()).sum() == 0 adj_triu = sp.triu(adj, 1) edges = sparse_to_tuple(adj_triu)[0] num_test = int(np.floor(edges.shape[0] * test_frac)) num_val = int(np.floor(edges.shape[0] * val_frac)) all_edge_idx = list(range(edges.shape[0])) np.random.shuffle(all_edge_idx) val_edge_idx = all_edge_idx[:num_val] test_edge_idx = all_edge_idx[num_val : (num_val + num_test)] test_edges = edges[test_edge_idx] val_edges = edges[val_edge_idx] train_edges = edges[all_edge_idx[num_val + num_test :]] noedge_mask = np.ones(adj.shape) - adj noedges = np.asarray(sp.triu(noedge_mask, 1).nonzero()).T all_edge_idx = list(range(noedges.shape[0])) np.random.shuffle(all_edge_idx) val_edge_idx = all_edge_idx[:num_val] test_edge_idx = all_edge_idx[num_val : (num_val + num_test)] test_edges_false = noedges[test_edge_idx] val_edges_false = noedges[val_edge_idx] data = np.ones(train_edges.shape[0]) adj_train = sp.csr_matrix( (data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape ) adj_train = adj_train + adj_train.T train_mask = np.ones(adj_train.shape) for edges_tmp in [val_edges, val_edges_false, test_edges, test_edges_false]: for e in edges_tmp: assert e[0] < e[1] train_mask[edges_tmp.T[0], edges_tmp.T[1]] = 0 train_mask[edges_tmp.T[1], edges_tmp.T[0]] = 0 train_edges = np.asarray(sp.triu(adj_train, 1).nonzero()).T train_edges_false = np.asarray( (sp.triu(train_mask, 1) - sp.triu(adj_train, 1)).nonzero() ).T # NOTE: all these edge lists only contain single direction of edge! return ( train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false, ) def sparse_to_tuple(sparse_mx): if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() values = sparse_mx.data shape = sparse_mx.shape return coords, values, shape if __name__ == "__main__": os.mkdir("links") os.mkdir("pretrain_labels") g = AmazonCoBuyPhotoDataset()[0] total_pos_edges = torch.randperm(g.num_edges()) adj_train = g.adjacency_matrix(scipy_fmt="csr") ( train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false, ) = mask_test_edges(adj_train, 0.1, 0.2) tvt_edges_file = "links/co_photo_tvtEdges.pkl" pickle.dump( ( train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false, ), open(tvt_edges_file, "wb"), ) node_assignment = dgl.metis_partition_assignment(g, 10) torch.save(node_assignment, "pretrain_labels/metis_label_co_photo.pt")