""" 运行此脚本可以得到回测结果。 你需要先修改此脚本中的data_dir和save_dir、以及calculate_pnl.py中的fee_data、volume_data、inst_data五个地方的路径为你本地机器的路径, 之后就可以运行成功。 """ from calculate_pnl import calculate_pnl, portfolio import pandas as pd import os from datetime import date, timedelta product_para = { # "FG": {"exchange": "CZCE", "open_threshold": 0.88, "close_threshold": 0.792}, # "sc": {"exchange": "DCE", "open_threshold": 0.46, "close_threshold": 0.322}, "FG": {"exchange": "CZCE", "open_threshold": 0.25, "close_threshold": 0.15}, "sc": {"exchange": "DCE", "open_threshold": 0.46, "close_threshold": 0.322}, } ############################## change dir here ############################## # data_dir = "./generate_data/" # 保存数据的路径 # save_dir = "./backtest/" # 保存回测结果的路径 data_dir = "./res/" # 保存数据的路径 save_dir = "./backtest/" # 保存回测结果的路径 ############################################################################# if __name__ == "__main__": # product parameters product = "FG" # 品种名称 exchange = product_para[product]["exchange"] # 交易所 open_threshold = product_para[product]["open_threshold"] # 开仓阈值 close_threshold = product_para[product]["close_threshold"] # 平仓阈值 max_pos = 1 # 最大仓位 # backtest parameters start_day = date(2023, 12, 18) # 回测起始日 end_day = date(2023, 12, 18) # 回测结束日 rebate_ratio = 0.4 # 手续费返还比例,0.4代表40%的手续费最后会被返还给给账户 # backtest day = start_day backtest_data = {} while day <= end_day: path = os.path.join(data_dir, product, "{}.csv".format(day)) print(path, os.path.exists(path)) if not os.path.exists(path): day += timedelta(days = 1) continue tmp = pd.read_csv(path) backtest_data[day] = calculate_pnl( product = product, exchange = exchange, data = tmp, max_pos = max_pos, open_threshold = open_threshold, close_threshold = close_threshold, ) day += timedelta(days = 1) continue # generate pnl data portfolio( trade_data = backtest_data, max_pos = max_pos, threshold = (open_threshold, close_threshold), rebate_ratio = rebate_ratio, save_dir = os.path.join(save_dir, product), )