{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import os, sys, json, collections\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### FG(玻璃)数据" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(80808, 127)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0MidPxChange_1MidPxChange_5MidPxChange_10MidPxChange_20MidPxChange_50MidPxChange_100MidPxChange_200MidPxVolRatio_1MidPxVolRatio_5...label1label2lastbidaskbid_volask_volvolumeturnoverpredict
02023-05-31 21:00:00.500-1.0-1.0-1.0-1.0-1.0-1.0-1.0-0.00303-0.003030...-7.0-2.2857141406.01405.01406.0594.096.02502.03524194.00.245262
12023-05-31 21:00:00.7500.0-1.0-1.0-1.0-1.0-1.0-1.00.00000-0.001105...-7.0-2.2857141406.01405.01406.0460.01102.03077.04332491.0-0.709275
\n", "

2 rows × 127 columns

\n", "
" ], "text/plain": [ " Unnamed: 0 MidPxChange_1 MidPxChange_5 MidPxChange_10 \\\n", "0 2023-05-31 21:00:00.500 -1.0 -1.0 -1.0 \n", "1 2023-05-31 21:00:00.750 0.0 -1.0 -1.0 \n", "\n", " MidPxChange_20 MidPxChange_50 MidPxChange_100 MidPxChange_200 \\\n", "0 -1.0 -1.0 -1.0 -1.0 \n", "1 -1.0 -1.0 -1.0 -1.0 \n", "\n", " MidPxVolRatio_1 MidPxVolRatio_5 ... label1 label2 last bid \\\n", "0 -0.00303 -0.003030 ... -7.0 -2.285714 1406.0 1405.0 \n", "1 0.00000 -0.001105 ... -7.0 -2.285714 1406.0 1405.0 \n", "\n", " ask bid_vol ask_vol volume turnover predict \n", "0 1406.0 594.0 96.0 2502.0 3524194.0 0.245262 \n", "1 1406.0 460.0 1102.0 3077.0 4332491.0 -0.709275 \n", "\n", "[2 rows x 127 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "filepath = '/Users/saidcalculationboy/Coding/GenWealth/data/generate_data/FG/2023-06-01.csv'\n", "FG_1_df = pd.read_csv(filepath)\n", "print(FG_1_df.shape)\n", "FG_1_df.head(2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(84453, 127)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0MidPxChange_1MidPxChange_5MidPxChange_10MidPxChange_20MidPxChange_50MidPxChange_100MidPxChange_200MidPxVolRatio_1MidPxVolRatio_5...label1label2lastbidaskbid_volask_volvolumeturnoverpredict
02023-05-31 21:00:01.0000.50.50.50.50.50.50.50.0192310.019231...5.1428575.1428574905.04901.04905.04.05.0559.02744938.0-0.014487
12023-05-31 21:00:01.250-0.50.00.00.00.00.00.0-0.0061730.000000...6.0357146.0357144904.04902.04903.01.03.0640.03141997.0-0.093558
\n", "

2 rows × 127 columns

\n", "
" ], "text/plain": [ " Unnamed: 0 MidPxChange_1 MidPxChange_5 MidPxChange_10 \\\n", "0 2023-05-31 21:00:01.000 0.5 0.5 0.5 \n", "1 2023-05-31 21:00:01.250 -0.5 0.0 0.0 \n", "\n", " MidPxChange_20 MidPxChange_50 MidPxChange_100 MidPxChange_200 \\\n", "0 0.5 0.5 0.5 0.5 \n", "1 0.0 0.0 0.0 0.0 \n", "\n", " MidPxVolRatio_1 MidPxVolRatio_5 ... label1 label2 last bid \\\n", "0 0.019231 0.019231 ... 5.142857 5.142857 4905.0 4901.0 \n", "1 -0.006173 0.000000 ... 6.035714 6.035714 4904.0 4902.0 \n", "\n", " ask bid_vol ask_vol volume turnover predict \n", "0 4905.0 4.0 5.0 559.0 2744938.0 -0.014487 \n", "1 4903.0 1.0 3.0 640.0 3141997.0 -0.093558 \n", "\n", "[2 rows x 127 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "filepath = '/Users/saidcalculationboy/Coding/GenWealth/data/generate_data/sc/2023-06-01.csv'\n", "sc_1_df = pd.read_csv(filepath)\n", "print(sc_1_df.shape)\n", "sc_1_df.head(2)" ] } ], "metadata": { "kernelspec": { "display_name": "pytorch", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 2 }