# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """CNN/DailyMail Summarization dataset, non-anonymized version.""" import hashlib import os import datasets logger = datasets.logging.get_logger(__name__) _HOMEPAGE = "https://github.com/abisee/cnn-dailymail" _DESCRIPTION = """\ CNN/DailyMail non-anonymized summarization dataset. There are two features: - article: text of news article, used as the document to be summarized - highlights: joined text of highlights with and around each highlight, which is the target summary """ # The second citation introduces the source data, while the first # introduces the specific form (non-anonymized) we use here. _CITATION = """\ @article{DBLP:journals/corr/SeeLM17, author = {Abigail See and Peter J. Liu and Christopher D. Manning}, title = {Get To The Point: Summarization with Pointer-Generator Networks}, journal = {CoRR}, volume = {abs/1704.04368}, year = {2017}, url = {http://arxiv.org/abs/1704.04368}, archivePrefix = {arXiv}, eprint = {1704.04368}, timestamp = {Mon, 13 Aug 2018 16:46:08 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/SeeLM17}, bibsource = {dblp computer science bibliography, https://dblp.org} } @inproceedings{hermann2015teaching, title={Teaching machines to read and comprehend}, author={Hermann, Karl Moritz and Kocisky, Tomas and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil}, booktitle={Advances in neural information processing systems}, pages={1693--1701}, year={2015} } """ _DL_URLS = { "cnn_stories": "https://huggingface.co/datasets/cnn_dailymail/resolve/11343c3752184397d56efc19a8a7cceb68089318/data/cnn_stories.tgz", "dm_stories": "https://huggingface.co/datasets/cnn_dailymail/resolve/11343c3752184397d56efc19a8a7cceb68089318/data/dailymail_stories.tgz", "train": "https://raw.githubusercontent.com/abisee/cnn-dailymail/master/url_lists/all_train.txt", "validation": "https://raw.githubusercontent.com/abisee/cnn-dailymail/master/url_lists/all_val.txt", "test": "https://raw.githubusercontent.com/abisee/cnn-dailymail/master/url_lists/all_test.txt", } _HIGHLIGHTS = "highlights" _ARTICLE = "article" _SUPPORTED_VERSIONS = [ # Using cased version. datasets.Version("3.0.0", "Using cased version."), # Same data as 0.0.2 datasets.Version("1.0.0", ""), # Having the model predict newline separators makes it easier to evaluate # using summary-level ROUGE. datasets.Version("2.0.0", "Separate target sentences with newline."), ] _DEFAULT_VERSION = datasets.Version("3.0.0", "Using cased version.") class CnnDailymailConfig(datasets.BuilderConfig): """BuilderConfig for CnnDailymail.""" def __init__(self, **kwargs): """BuilderConfig for CnnDailymail. Args: **kwargs: keyword arguments forwarded to super. """ super(CnnDailymailConfig, self).__init__(**kwargs) def _get_url_hashes(path): """Get hashes of urls in file.""" urls = _read_text_file_path(path) def url_hash(u): h = hashlib.sha1() try: u = u.encode("utf-8") except UnicodeDecodeError: logger.error("Cannot hash url: %s", u) h.update(u) return h.hexdigest() return {url_hash(u) for u in urls} def _get_hash_from_path(p): """Extract hash from path.""" return os.path.splitext(os.path.basename(p))[0] DM_SINGLE_CLOSE_QUOTE = "\u2019" # unicode DM_DOUBLE_CLOSE_QUOTE = "\u201d" # acceptable ways to end a sentence END_TOKENS = [".", "!", "?", "...", "'", "`", '"', DM_SINGLE_CLOSE_QUOTE, DM_DOUBLE_CLOSE_QUOTE, ")"] def _read_text_file_path(path): with open(path, "r", encoding="utf-8") as f: lines = [line.strip() for line in f] return lines def _read_text_file(file): return [line.decode("utf-8").strip() for line in file] def _get_art_abs(story_file, tfds_version): """Get abstract (highlights) and article from a story file path.""" # Based on https://github.com/abisee/cnn-dailymail/blob/master/ # make_datafiles.py lines = _read_text_file(story_file) # The github code lowercase the text and we removed it in 3.0.0. # Put periods on the ends of lines that are missing them # (this is a problem in the dataset because many image captions don't end in # periods; consequently they end up in the body of the article as run-on # sentences) def fix_missing_period(line): """Adds a period to a line that is missing a period.""" if "@highlight" in line: return line if not line: return line if line[-1] in END_TOKENS: return line return line + " ." lines = [fix_missing_period(line) for line in lines] # Separate out article and abstract sentences article_lines = [] highlights = [] next_is_highlight = False for line in lines: if not line: continue # empty line elif line.startswith("@highlight"): next_is_highlight = True elif next_is_highlight: highlights.append(line) else: article_lines.append(line) # Make article into a single string article = " ".join(article_lines) if tfds_version >= "2.0.0": abstract = "\n".join(highlights) else: abstract = " ".join(highlights) return article, abstract class CnnDailymail(datasets.GeneratorBasedBuilder): """CNN/DailyMail non-anonymized summarization dataset.""" BUILDER_CONFIGS = [ CnnDailymailConfig(name=str(version), description="Plain text", version=version) for version in _SUPPORTED_VERSIONS ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { _ARTICLE: datasets.Value("string"), _HIGHLIGHTS: datasets.Value("string"), "id": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _vocab_text_gen(self, paths): for _, ex in self._generate_examples(paths): yield " ".join([ex[_ARTICLE], ex[_HIGHLIGHTS]]) def _split_generators(self, dl_manager): dl_paths = dl_manager.download(_DL_URLS) return [ datasets.SplitGenerator( name=split, gen_kwargs={ "urls_file": dl_paths[split], "files_per_archive": [ dl_manager.iter_archive(dl_paths["cnn_stories"]), dl_manager.iter_archive(dl_paths["dm_stories"]), ], }, ) for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST] ] def _generate_examples(self, urls_file, files_per_archive): urls = _get_url_hashes(urls_file) idx = 0 for files in files_per_archive: for path, file in files: hash_from_path = _get_hash_from_path(path) if hash_from_path in urls: article, highlights = _get_art_abs(file, self.config.version) if not article or not highlights: continue yield idx, { _ARTICLE: article, _HIGHLIGHTS: highlights, "id": hash_from_path, } idx += 1