# Copyright (C) 2024 Aaron Keesing # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # “Software”), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from itertools import chain import json import os import tarfile import pandas as pd import datasets _CITATION = """\ @inproceedings{45857, title = {Audio Set: An ontology and human-labeled dataset for audio events}, author = {Jort F. Gemmeke and Daniel P. W. Ellis and Dylan Freedman and Aren Jansen and Wade Lawrence and R. Channing Moore and Manoj Plakal and Marvin Ritter}, year = {2017}, booktitle = {Proc. IEEE ICASSP 2017}, address = {New Orleans, LA} } """ _DESCRIPTION = """\ This repository contains the balanced training set and evaluation set of the AudioSet data, described here: https://research.google.com/audioset/dataset/index.html. The YouTube videos were downloaded in March 2023, and so not all of the original audios are available. """ _HOMEPAGE = "https://research.google.com/audioset/dataset/index.html" _LICENSE = "cc-by-4.0" _URL_PREFIX = "https://huggingface.co/datasets/agkphysics/AudioSet/resolve/main" _N_BAL_TRAIN_TARS = 10 _N_UNBAL_TRAIN_TARS = 870 _N_EVAL_TARS = 9 def _iter_tar(path): """Iterate through the tar archive, but without skipping some files, which the HF DL does. """ with open(path, "rb") as fid: stream = tarfile.open(fileobj=fid, mode="r|*") for tarinfo in stream: file_obj = stream.extractfile(tarinfo) yield tarinfo.name, file_obj stream.members = [] del stream class AudioSetDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="balanced", version=VERSION, description="Balanced training and balanced evaluation set.", ), datasets.BuilderConfig( name="unbalanced", version=VERSION, description="Full unbalanced training set and balanced evaluation set.", ), ] DEFAULT_CONFIG_NAME = "balanced" def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, license=_LICENSE, features=datasets.Features( { "video_id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=None, mono=True, decode=True), "labels": datasets.Sequence(datasets.Value("string")), "human_labels": datasets.Sequence(datasets.Value("string")), } ), ) def _split_generators(self, dl_manager: datasets.DownloadManager): if self.config.data_dir: prefix = self.config.data_dir else: prefix = _URL_PREFIX prefix = prefix + "/data" _LABEL_URLS = { "bal_train": ( f"{prefix}/balanced_train_segments.csv" if self.config.name == "balanced" else f"{prefix}/unbalanced_train_segments.csv" ), "eval": f"{prefix}/eval_segments.csv", "ontology": f"{prefix}/ontology.json", } _DATA_URLS = { "bal_train": ( [f"{prefix}/bal_train0{i}.tar" for i in range(_N_BAL_TRAIN_TARS)] if self.config.name == "balanced" else [ f"{prefix}/unbal_train{i:03d}.tar" for i in range(_N_UNBAL_TRAIN_TARS) ] ), "eval": [f"{prefix}/eval0{i}.tar" for i in range(_N_EVAL_TARS)], } tar_files = dl_manager.download(_DATA_URLS) label_files = dl_manager.download(_LABEL_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "labels": label_files["bal_train"], "ontology": label_files["ontology"], "audio_files": chain.from_iterable( _iter_tar(x) for x in tar_files["bal_train"] ), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "labels": label_files["eval"], "ontology": label_files["ontology"], "audio_files": chain.from_iterable( _iter_tar(x) for x in tar_files["eval"] ), }, ), ] def _generate_examples(self, labels, ontology, audio_files): with open(ontology) as fid: ontology_data = json.load(fid) id_to_name = {x["id"]: x["name"] for x in ontology_data} labels_df = pd.read_csv( labels, skiprows=3, header=None, skipinitialspace=True, names=["vid_id", "start", "end", "labels"], index_col="vid_id", ) for path, fid in audio_files: vid_id = os.path.splitext(os.path.basename(path))[0] label_ids = labels_df.loc[vid_id, "labels"].split(",") human_labels = [id_to_name[x] for x in label_ids] example = { "video_id": vid_id, "labels": label_ids, "human_labels": human_labels, "audio": {"path": path, "bytes": fid.read()}, } yield vid_id, example